Existence of pearled patterns in the planar Functionalized Cahn-Hilliard equation


الملخص بالإنكليزية

The functionalized Cahn-Hilliard (FCH) equation supports planar and circular bilayer interfaces as equilibria which may lose their stability through the pearling bifurcation: a periodic, high-frequency, in-plane modulation of the bilayer thickness. In two spatial dimensions we employ spatial dynamics and a center manifold reduction to reduce the FCH equation to an 8th order ODE system. A normal form analysis and a fixed-point-theorem argument show that the reduced system admits a degenerate 1:1 resonant normal form, from which we deduce that the onset of the pearling bifurcation coincides with the creation of a two-parameter family of pearled equilibria which are periodic in the in-plane direction and exponentially localized in the transverse direction.

تحميل البحث