ﻻ يوجد ملخص باللغة العربية
Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatories from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12-25) in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.
The gas-solid budget of carbon in protoplanetary disks is related to the composition of the cores and atmospheres of the planets forming in them. The key gas-phase carbon carriers CO, C$^{0}$ and C$^{+}$ can now be observed in disks. The gas-phase ca
We used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. The maps are centered on the luminous infrared source IR
We present first results of neutral carbon ([CI], 3P1 - 3P0 at 492 GHz) and carbon monoxide (13CO, J = 1 - 0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the
We present a statistical study on the [C I]($^{3} rm P_{1} rightarrow {rm ^3 P}_{0}$), [C I] ($^{3} rm P_{2} rightarrow {rm ^3 P}_{1}$) lines (hereafter [C I] (1$-$0) and [C I] (2$-$1), respectively) and the CO (1$-$0) line for a sample of (ultra)lum
The early evolutionary stage of brown dwarfs are not very well characterized, specially during the embedded phase. To gain insight into the dominant formation mechanism of very low-mass objects and brown dwarfs, we conducted deep observations at 870$