ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and performance of the Focusing DIRC detector

235   0   0.0 ( 0 )
 نشر من قبل Jerry Va'vra
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the final results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a full-scale prototype of the particle identification system for the SuperB experiment [1], and comprises 1/12 of the SuperB barrel azimuthal coverage, with partial photodetector and electronics implementation. The prototype was tested in the SLAC Cosmic Ray Telescope which provided 3-D tracking of cosmic muons with an angular resolution of ~1.5 mrad, a position resolution of 4-5 mm, a start time resolution of 70 ps, and muon tracks above ~2 GeV tagged using an iron range stack. The fused silica focusing photon camera was coupled to a full-size BaBar DIRC bar box and was read out, over part of the full coverage, by 12 Hamamatsu H8500 multi-anode photomultipliers (MaPMTs) providing 768 pixels. We used waveform digitizing electronics to read out the MaPMTs. We give a detailed description of our data analysis methods and point out limitations on the present performance. We present results that demonstrate some basic performance characteristics of this design, including: (a) single photon Cherenkov angle resolutions with and without chromatic corrections, (b) signal-to-noise (S/N) ratio between the Cherenkov peak and background, which primarily consists of ambiguities of the possible photon paths from emission along the track to a given pixel, (c) dTOP = TOP_measured - TOP_expected resolutions (with TOP being the photon Time-of-Propagation in fused silica), and (d) performance of the detector in the presence of high-rate backgrounds.



قيم البحث

اقرأ أيضاً

171 - L. Aliaga , L. Bagby , B. Baldin 2013
The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $ u_mu$ and ${bar u}_mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the minerva det ector and describes the {em ex situ} and {em in situ} techniques employed to characterize the detector and monitor its performance. The detector is comprised of a finely-segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.
79 - G. Schepers , A. Ali , A. Belias 2019
The Barrel DIRC of the PANDA experiment at FAIR will cleanly separate pions from kaons for the physics program of PANDA. Innovative solutions for key components of the detector sitting in the strong magnetic field of the compact PANDA target spectrom eter as well as two reconstruction methods were developed in an extensive prototype program. The technical design and present results from the test beam campaigns at the CERN PS in 2017 and 2018 are discussed.
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config uration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.
66 - M. Schmidt 2019
The key component of the future PANDA experiment at FAIR is a fixed-target detector for collisions of antiprotons with a proton target up to a beam momentum of 15 GeV/c and is designed to address a large number of open questions in the hadron physics sector. In order to guarantee an excellent PID for charged hadrons in the polar angle range between $5^circ$ and $22^circ$, a new type of Cherenkov detector called Endcap Disc DIRC (EDD) has been developed for the forward endcap of the PANDA target spectrometer. The desired separation power of at least 3 s.d. for the separation of $pi^pm$ and $K^pm$ up to particle momenta of 4 GeV/c was determined with simulation studies and validated during various testbeam campaigns at CERN and DESY.
408 - C. Schwarz , A. Ali , A. Belias 2019
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling con stant $alpha_s gtrsim 0.3$. The luminosity of up to $2 cdot 10^{32} cm^{-2}s^{-1}$ and the momentum resolution of the antiproton beam down to mbox{$Delta$p/p = 4$cdot10^{-5}$} allows for high precision spectroscopy, especially for rare reaction processes. Above the production threshold for open charm mesons the production of kaons plays an important role for identifying the reaction. The DIRC principle allows for a compact particle identification for charged particles in a hermetic detector, limited in size by the electromagnetic lead tungstate calorimeter. The Barrel DIRC in the target spectrometer covers polar angles between $22^circ$ and $140^circ$ and will achieve a pion-kaon separation of 3 standard deviations up to 3.5 GeV/$c$. Here, results of a test beam are shown for a single radiator bar coupled to a prism with $33^circ$ opening angle, both made from synthetic fused silica read out with a photon detector array with 768 pixels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا