ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hubble Space Telescope Search for a Sub-Earth-Sized Exoplanet in the GJ 436 System

162   0   0.0 ( 0 )
 نشر من قبل Kevin Stevenson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the nearby mid-M dwarf star GJ 436. As a follow up, here we used the Hubble Space Telescope to investigate the existence of one of these candidate planets, UCF-1.01, by searching for two transit signals as it passed in front of its host star. Interpretation of the data hinges critically on correctly modeling and removing the WFC3 instrument systematics from the light curves. Building on previous HST work, we demonstrate that WFC3 analyses need to explore the use of a quadratic function to fit a visit-long time-dependent systematic. This is important for establishing absolute transit and eclipse depths in the white light curves of all transiting systems. The work presented here exemplifies this point by putatively detecting the primary transit of UCF-1.01 with the use of a linear trend. However, using a quadratic trend, we achieve a better fit to the white light curves and a reduced transit depth that is inconsistent with previous Spitzer measurements. Furthermore, quadratic trends with or without a transit model component produce comparable fits to the available data. Using extant WFC3 transit light curves for GJ436b, we further validate the quadratic model component by achieving photon-limited model fit residuals and consistent transit depths over multiple epochs. We conclude that, when we fit for a quadratic trend, our new data contradict the prediction of a sub-Earth-sized planet orbiting GJ 436 with the size, period, and ephemeris posited from the Spitzer data by a margin of 3.1{sigma}.



قيم البحث

اقرأ أيضاً

We report the detection of UCF-1.01, a strong exoplanet candidate with a radius 0.66 +/- 0.04 times that of Earth (R_{oplus}). This sub-Earth-sized planet transits the nearby M-dwarf star GJ 436 with a period of 1.365862 +/- 8x10^{-6} days. We also r eport evidence of a 0.65 +/- 0.06 R_{oplus} exoplanet candidate (labeled UCF-1.02) orbiting the same star with an undetermined period. Using the Spitzer Space Telescope, we measure the dimming of light as the planets pass in front of their parent star to assess their sizes and orbital parameters. If confirmed, UCF-1.01 and UCF-1.02 would be called GJ 436c and GJ 436d, respectively, and would be part of the first multiple-transiting-planet system outside of the Kepler field. Assuming Earth-like densities of 5.515 g/cm^3, we predict both candidates to have similar masses (~0.28 Earth-masses, M_{oplus}, 2.6 Mars-masses) and surface gravities of ~0.65 g (where g is the gravity on Earth). UCF-1.01s equilibrium temperature (T_{eq}, where emitted and absorbed radiation balance for an equivalent blackbody) is 860 K, making the planet unlikely to harbor life as on Earth. Its weak gravitational field and close proximity to its host star imply that UCF-1.01 is unlikely to have retained its original atmosphere; however, a transient atmosphere is possible if recent impacts or tidal heating were to supply volatiles to the surface. We also present additional observations of GJ 436b during secondary eclipse. The 3.6-micron light curve shows indications of stellar activity, making a reliable secondary eclipse measurement impossible. A second non-detection at 4.5 microns supports our previous work in which we find a methane-deficient and carbon monoxide-rich dayside atmosphere.
Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright star s, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 hours of continuous observations.
Since the discovery of the first exoplanet we have known that other planetary systems can look quite unlike our own. However, until recently we have only been able to probe the upper range of the planet size distribution. The high precision of the Ke pler space telescope has allowed us to detect planets that are the size of Earth and somewhat smaller, but no previous planets have been found that are smaller than those we see in our own Solar System. Here we report the discovery of a planet significantly smaller than Mercury. This tiny planet is the innermost of three planets that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of Earths Moon, and highly irradiated surface, Kepler-37b is probably a rocky planet with no atmosphere or water, similar to Mercury.
(Abridged) The quiet M2.5 star GJ 436 hosts a warm Neptune that displays an extended atmosphere that dwarfs its own host star. Predictions of atmospheric escape in such planets state that H atoms escape from the upper atmosphere in a collisional regi me and that the flow can drag heavier atoms to the upper atmosphere. It is unclear, however, what astrophysical mechanisms drive the process. Our objective is to leverage the extensive coverage of HST/COS observations of the far-ultraviolet (FUV) spectrum of GJ 436 to search for signals of metallic ions in the upper atmosphere of GJ 436 b. We analyzed flux time-series of species present in the FUV spectrum of GJ 436, as well as the Lyman-$alpha$ line. GJ 436 displays FUV flaring events with a rate of $sim$10 d$^{-1}$. There is evidence for a possibly long-lived active region or longitude that modulates the FUV metallic lines of the star with amplitudes up to 20%. Despite the strong geocoronal contamination in the COS spectra, we detected in-transit excess absorption signals of $sim$50% and $sim$30% in the blue and red wings, respectively, of the Lyman-$alpha$ line. We rule out a wide range of excess absorption levels in the metallic lines of the star during the transit. The large atmospheric loss of GJ 436 b observed in Lyman-$alpha$ transmission spectra is stable over the timescale of a few years, and the red wing signal supports the presence of a variable hydrogen absorption source besides the stable exosphere. The previously claimed in-transit absorption in the Si III line is likely an artifact resulting from the stellar magnetic cycle. The non-detection of metallic ions in absorption could indicate that the escape is not hydrodynamic or that the atmospheric mixing is not efficient in dragging metals high enough for sublimation to produce a detectable escape rate of ions to the exosphere.
The Earth, Venus, Mars, and some extrasolar terrestrial planets have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle. At the inner frontier of the solar system, Mercury has a completely dif ferent composition, with a mass fraction of about 70% metallic core and 30% silicate mantle. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact, mantle evaporation, or the depletion of silicate at the inner-edge of the proto-planetary disk. These scenarios are still strongly debated. Here we report the discovery of a multiple transiting planetary system (K2-229), in which the inner planet has a radius of 1.165+/-0.066 Rearth and a mass of 2.59+/-0.43 Mearth. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, while it was expected to be similar to that of the Earth based on host-star chemistry. This larger Mercury analogue either formed with a very peculiar composition or it has evolved since, e.g. by losing part of its mantle. Further characterisation of Mercury-like exoplanets like K2-229 b will help putting the detailed in-situ observations of Mercury (with Messenger and BepiColombo) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا