ﻻ يوجد ملخص باللغة العربية
Modern advances in space technology have enabled the capture and recording of unprecedented volumes of data. In the field of solar physics this is most readily apparent with the advent of the Solar Dynamics Observatory (SDO), which returns in excess of 1 terabyte of data daily. While we now have sufficient capability to capture, transmit and store this information, the solar physics community now faces the new challenge of analysis and mining of high-volume and potentially boundless data sets such as this: a task known to the computer science community as stream mining. In this paper, we survey existing and established stream mining methods in the context of solar physics, with a goal of providing an introductory overview of stream mining algorithms employed by the computer science fields. We consider key concepts surrounding stream mining that are applicable to solar physics, outlining existing algorithms developed to address this problem in other fields of study, and discuss their applicability to massive solar data sets. We also discuss the considerations and trade-offs that may need to be made when applying stream mining methods to solar data. We find that while no one single solution is readily available, many of the methods now employed in other data streaming applications could successfully be modified to apply to solar data and prove invaluable for successful analysis and mining of this new source.
We study how a high-speed solar wind stream embedded in a slow solar wind influences the spread of solar energetic protons in interplanetary space. To model the energetic protons, we used a recently developed particle transport code that computes par
The complete and concurrent Homestake and Kamiokande solar neutrino data sets (including backgrounds), when compared to detailed model predictions, provide no unambiguous indication of the solution to the solar neutrino problem. All neutrino-based so
Solar X-ray Monitor (XSM) instrument of Indias Chandrayaan-2 lunar mission carries out broadband spectroscopy of the Sun in soft X-rays. XSM, with its unique features such as low background, high time cadence, and high spectral resolution, provides t
In-situ observations of magnetic field fluctuations in the solar wind show a broad continuum in the power spectral density (PSD) with a power-law range of scaling often identified as an inertial range of magnetohydrodynamic turbulence. However, both
Solar wind stream interaction regions (SIRs) are often characterized by energetic ion enhancements. The mechanisms accelerating these particles, as well as the locations where the acceleration occurs, remain debated. Here, we report the findings of a