ﻻ يوجد ملخص باللغة العربية
The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s$^{-1}$. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 $mu$m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.
Apart from being an important coolant, H2O is known to be a tracer of high-velocity molecular gas. Recent models predict relatively high abundances behind interstellar shockwaves. The dynamical and physical conditions of the H2O emitting gas, however
We present ~2x2 spectral-maps of Orion BN/KL outflows taken with Herschel at ~12 resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions Peak 1 and Peak 2 from that of the H
We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of $^{12}$CO and $^{13}$CO 3-2 and 0.9 mm continuum emission with 0.35 resolution.
In the framework of the WISH key program, several H2O (E_u>190 K), high-J CO, [OI], and OH transitions are mapped with PACS in two shock positions along the two prototypical low-luminosity outflows L1448 and L1157. Previous HIFI H2O observations (E_u
The youngest, closest and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We pr