ﻻ يوجد ملخص باللغة العربية
We argue that the hour-long neutron transient detected by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Neutron Spectrometer beginning at 15:45 UT on 2011 June 4 is due to secondary neutrons from energetic protons interacting in the spacecraft. The protons were probably accelerated by a shock that passed the spacecraft about thirty minutes earlier. We reach this conclusion after a study of data from the MESSENGER neutron spectrometer, gamma-ray spectrometer, X-ray Spectrometer, and Energetic Particle Spectrometer, and from the particle spectrometers on STEREO A. Our conclusion differs markedly from that given by Lawrence et al. [2014] who claimed that there is strong evidence that the neutrons were produced by the interaction of ions in the solar atmosphere. We identify significant faults with the authors arguments that led them to that conclusion.
An M6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with this flare, solar neutron detectors located on two high mountains, Mt. Sierra Negra and Chacaltaya and at the space station observed enha
We present a nonlinear mean-field model of the solar interior dynamics and dynamo, which reproduces the observed cyclic variations of the global magnetic field of the Sun, as well as the differential rotation and meridional circulation. Using this mo
We report the first detection of >100 MeV gamma rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES
Data on the reaction $gamma pto K^+Lambda$ from the CLAS experiments are used to derive the leading multipoles, $E_{0+}$, $M_{1-}$, $E_{1+}$, and $M_{1+}$, from the production threshold to 2180,MeV in 24 slices of the invariant mass. The four multipo
Spacecraft observations in the inner heliosphere offer the first opportunity to measure 1-10 MeV solar neutrons. We discuss the physics of low-energy neutron production in solar flares and show that, even at interacting-particle energies of 2 MeV/nuc