ﻻ يوجد ملخص باللغة العربية
We consider the problem of selecting deterministic or stochastic models for a biological, ecological, or environmental dynamical process. In most cases, one prefers either deterministic or stochastic models as candidate models based on experience or subjective judgment. Due to the complex or intractable likelihood in most dynamical models, likelihood-based approaches for model selection are not suitable. We use approximate Bayesian computation for parameter estimation and model selection to gain further understanding of the dynamics of two epidemics of chronic wasting disease in mule deer. The main novel contribution of this work is that under a hierarchical model framework we compare three types of dynamical models: ordinary differential equation, continuous time Markov chain, and stochastic differential equation models. To our knowledge model selection between these types of models has not appeared previously. Since the practice of incorporating dynamical models into data models is becoming more common, the proposed approach may be very useful in a variety of applications.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode
We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumor response to treatment and regrowth in mice. We produce an extensive study on how a SDEMEM can be fitted using both exact inference b
Bayesian inference methods rely on numerical algorithms for both model selection and parameter inference. In general, these algorithms require a high computational effort to yield reliable estimates. One of the major challenges in phylogenetics is th
Bayesian inference methods are applied within a Bayesian hierarchical modelling framework to the problems of joint state and parameter estimation, and of state forecasting. We explore and demonstrate the ideas in the context of a simple nonlinear mar