ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in 122-type antimonide BaPt$_2$Sb$_2$

205   0   0.0 ( 0 )
 نشر من قبل Soshi Ibuka
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The crystal structure, superconducting properties, and electronic structure of a novel superconducting 122-type antimonide, BaPt$_2$Sb$_2$, have been investigated by measurements of powder X-ray diffraction patterns, electrical resistivity, ac magnetic susceptibility, specific heat as well as ab-initio calculations. This material crystallizes in a new-type of monoclinic variant of the CaBe$_2$Ge$_2$-type structure, in which Pt$_2$Sb$_2$ layers consisting of PtSb$_4$ tetrahedra and Sb$_2$Pt$_2$ layers consisting of SbPt$_4$ tetrahedra are stacked alternatively and Ba atoms are located between the layers. Measurements of electrical resistivity, ac magnetic susceptibility and specific heat revealed that BaPt$_2$Sb$_2$ is a superconducting material with a $T_{rm c}$ of 1.8 K. The electronic heat capacity coefficient $gamma_{rm n}$ and Debye temperature $theta_{rm D}$ were 8.6(2) mJ/mol K$^2$ and 146(4) K, where the figures in parentheses represent the standard deviation. The upper critical field $mu_{rm 0}H_{rm c2}(0)$ and the Ginzburg-Landau coherent length $xi(0)$ were determined to be 0.27 T and 35 nm. Calculations showed that it has two three-dimensional Fermi surfaces (FSs) and two two-dimensional FSs, leading to anisotropic transport properties. The d-states of the Pt atoms in the Pt2Sb2 layers mainly contribute to $N(E_{rm F})$. A comparison between experimental and calculated results indicates that BaPt$_2$Sb$_2$ is a superconducting material with moderate coupling.



قيم البحث

اقرأ أيضاً

We successfully synthesized the BaPt$_2$As$_2$ single crystals and studied their structural and physical properties at low temperatures. BaPt$_2$As$_2$ crystallizes in the CaBe$_2$Ge$_2$-type tetragonal structure (P4/nmm) at room temperature and unde rgoes a first-order structural transition at $T_Ssimeq 275$ K, which is likely associated with a charge-density-wave (CDW) instability. BCS-type superconductivity with two subsequent transitions at $T_{c1}=1.67$K and $T_{c2}$=1.33K are observed in this compound. Thus, BaPt$_2$As$_2$ may serve as a new system for studying the interplay of superconductivity and the CDW order.
The newly discovered BaPt$_2$As$_2$ shows a structural distortion at around 275~K, followed by the emergence of superconductivity at lower temperatures. Here we identify the presence of charge density wave (CDW) order at room temperature and ambient pressure using single crystal x-ray diffraction, with both a superlattice and an incommensurate modulation, where there is a change of the superlattice structure below $simeq$ 275~K. Upon applying pressure, BaPt$_2$As$_2$ shows a rich temperature-pressure phase diagram with multiple pressure-induced transitions at high temperatures, the emergence or disappearance of which are correlated with sudden changes in the superconducting transition temperature $T_c$. These findings demonstrate that BaPt$_2$As$_2$ is a promising new system for studying competing interactions and the relationship between high-temperature electronic instabilities and superconductivity.
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the in-plane four-fold symmetry is broken at the Sb site below $T_{rm A} sim$ 40 K, without an internal field appearing at the Sb site. These exclude a spin-density wave (SDW)/ charge density wave (CDW) ordering with incommensurate correlations, but can be understood with the commensurate CDW ordering at $T_{rm A}$. The spin-lattice relaxation rate $1/T_1$, measured at the four-fold symmetry breaking site, decreases below superconducting (SC) transition temperature $T_{rm c}$, indicative of the microscopic coexistence of superconductivity and the CDW/SDW phase below $T_{rm A}$. Furthermore, $1/T_1$ of $^{121}$Sb-NQR shows a coherence peak just below $T_{rm c}$ and decreases exponentially at low temperatures. These results are in sharp contrast with those in cuprate and iron-based superconductors, and strongly suggest that its SC symmetry is classified to an ordinary s-wave state.
We report the synthesis and physical properties of a full Heusler compound, MgPd$_2$Sb, which we found to show superconductivity below $T_c$ = 2.2 K. MgPd$_2$Sb was obtained by a two-step solid-state reaction method and its purity and cubic crystal s tructure (Fm-3m, a=6.4523(1) r{A}) were confirmed by powder x-ray diffraction. Normal and superconducting states were studied by electrical resistivity, magnetic susceptibility, and heat capacity measurements. The results show that MgPd$_2$Sb is a type-II, weak coupling superconductor ($lambda_{e-p}$ = 0.53). The observed pressure dependence of $T_c$ ($Delta T_c / p approx $ -0.23 K/GPa) is one of the strongest reported for a superconducting Heusler compound. The electronic structure, phonons, and electron-phonon coupling in MgPd$_2$Sb were theoretically investigated. The obtained results are in agreement with the experiment, confirming the electron-phonon coupling mechanism of superconductivity. We compare the superconducting parameters tothose of all reported Heusler-type superconductors.
102 - Shekhar Das , Amit , Anshu Sirohi 2017
The transition metal dichalcogenide PdTe$_2$ was recently shown to be a unique system where a type II Dirac semimetallic phase and a superconducting phase co-exist. This observation has led to wide speculation on the possibility of the emergence of a n unconventional topological superconducting phase in PdTe$_2$. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy (STS), and temperature and magnetic field evolution of the same, we show that the superconducting phase in PdTe$_2$ is conventional in nature. The superconducting energy gap is measured to be 326 $mu$eV at 0.38 K and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schriefers (BCS) theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically non-trivial character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا