As an extension of the ideas of Hanbury-Brown and Twiss, a method is proposed to eliminate the phase noise of white chaotic light in the regime where it is dominant, and to measure the much smaller Poisson fluctuations from which the incoming flux can be reconstructed (via the equality between variance and mean). The best effect is achieved when the timing resolution is finer than the inverse bandwidth of the spectral filter. There may be applications to radio astronomy at the phase noise dominated frequencies of $1 - 10$GHz, in terms of potentially increasing the sensitivity of telescopes by an order of magnitude.