ترغب بنشر مسار تعليمي؟ اضغط هنا

The space density of Compton-thick AGN at z~0.8 in the zCOSMOS-Bright Survey

136   0   0.0 ( 0 )
 نشر من قبل Cristian Vignali
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Vignali




اسأل ChatGPT حول البحث

The obscured accretion phase in BH growth is a key ingredient in many models linking the AGN activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing. The purpose of this work is to assess the reliability of the [NeV] emission line at 3426 A to pick up obscured AGN up to z~1 by assuming that [NeV] is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. A sample of 69 narrow-line (Type 2) AGN at z=0.65-1.20 were selected from the 20k-zCOSMOS Bright galaxy sample on the basis of the presence of the [NeV] emission. The X-ray properties of these galaxies were then derived using the Chandra-COSMOS coverage of the field; the X-ray-to-[NeV] flux ratio, coupled with X-ray spectral and stacking analyses, was then used to infer whether Compton-thin or Compton-thick absorption were present in these sources. Then the [NeV] luminosity function was computed to estimate the space density of Compton-thick (CT) AGN at z~0.8. Twenty-three sources were detected by Chandra, and their properties are consistent with moderate obscuration (on average, ~a few 10^{22} cm^-2). The X-ray properties of the remaining 46 X-ray undetected Type 2 AGN were derived using X-ray stacking analysis. Current data indicate that a fraction as high as ~40% of the present sample is likely to be CT. The space density of CT AGN with logL_2-10keV>43.5 at z=0.83 is (9.1+/-2.1) 10^{-6} Mpc^{-3}, in good agreement with both XRB model expectations and the previously measured space density for objects in a similar redshift and luminosity range. We regard our selection technique for CT AGN as clean but not complete, since even a mild extinction in the NLR can suppress [NeV] emission. Therefore, our estimate of their space density should be considered as a lower limit.



قيم البحث

اقرأ أيضاً

162 - E. Treister , C. M. Urry 2009
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN), and their contribution to the extragalactic X-ray background. In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, whil e for high redshifts we explore candidate selections based on mid-IR parameters. We present the properties of a sample of 211 heavily-obscured AGN candidates in the Extended Chandra Deep Field-South (ECDF-S) selecting objects with f24/fR>1000 and R-K>4.5. The X-ray to mid-IR ratios for these sources are significantly larger than that of star-forming galaxies and ~2 orders of magnitude smaller than for the general AGN population, suggesting column densities of NH>5x10^24 cm^-2. The space density of CT AGN at z~2 derived from these observations is ~10^-5 Mpc^{-3}, finding a strong evolution in the number of LX>10^44 erg/s sources from z=1.5 to 2.5.
238 - E. Treister 2009
We constrain the number density and evolution of Compton-thick Active Galactic Nuclei (AGN). In the local Universe we use the wide area surveys from the Swift and INTEGRAL satellites, while for high redshifts we explore candidate selections based on a combination of X-ray and mid-IR parameters. We find a significantly lower space density of Compton-thick AGN in the local Universe than expected from published AGN population synthesis models to explain the X-ray background. This can be explained by the numerous degeneracies in the parameters of those models; we use the high-energy surveys described here to remove those degeneracies. We show that only direct observations of CT AGN can currently constrain the number of heavily-obscured supermassive black holes. At high redshift, the inclusion of IR-selected Compton-thick AGN candidates leads to a much higher space density, implying (a) a different (steeper) evolution for these sources compared to less-obscured AGN, (b) that the IR selection includes a large number of interlopers, and/or (c) that there is a large number of reflection-dominated AGN missed in the INTEGRAL and Swift observations. The contribution of CT AGN to the X-ray background is small, ~9%, with a comparable contribution to the total cosmic accretion, unless reflection-dominated CT AGN significantly outnumber transmission-dominated CT AGN, in which case their contribution can be much higher. Using estimates derived here for the accretion luminosity over cosmic time we estimate the local mass density in supermassive black holes and find a good agreement with available constraints for an accretion efficiency of ~10%. Transmission-dominated CT AGN contribute only ~8% to total black hole growth.
To fully understand cosmic black hole growth we need to constrain the population of heavily obscured active galactic nuclei (AGN) at the peak of cosmic black hole growth ($zsim$1-3). Sources with obscuring column densities higher than $mathrm{10^{24} }$ atoms $mathrm{cm^{-2}}$, called Compton-thick (CT) AGN, can be identified by excess X-ray emission at $sim$20-30 keV, called the Compton hump. We apply the recently developed Spectral Curvature (SC) method to high-redshift AGN (2<z<5) detected with Chandra. This method parametrizes the characteristic Compton hump feature cosmologically redshifted into the X-ray band at observed energies <10 keV. We find good agreement in CT AGN found using the SC method and bright sources fit using their full spectrum with X-ray spectroscopy. In the Chandra deep field south, we measure a CT fraction of $mathrm{17^{+19}_{-11}%}$ (3/17) for sources with observed luminosity $mathrm{>5times 10^{43}}$ erg $mathrm{s^{-1}}$. In the Cosmological evolution survey (COSMOS), we find an observed CT fraction of $mathrm{15^{+4}_{-3}%}$ (40/272) or $mathrm{32pm11 %}$ when corrected for the survey sensitivity. When comparing to low redshift AGN with similar X-ray luminosities, our results imply the CT AGN fraction is consistent with having no redshift evolution. Finally, we provide SC equations that can be used to find high-redshift CT AGN (z>1) for current (XMM-Newton) and future (eROSITA and ATHENA) X-ray missions.
176 - P. Gandhi 2014
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Sw ift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disk, adding to the list of known Compton thick AGN in barred host galaxies.
249 - Weiwei Xu , Zhu Liu , Lijun Gou 2015
The cold disk/torus gas surrounding active galactic nuclei (AGN) emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$alpha$, Fe K$beta$, and Ni K$alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$alpha$ line at 1.74 keV is detected at $sim3sigma$, the other fluorescent lines have a significance between 2 and 2.5 $sigma$, while the Cr line has a significance of $sim1.5sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{rm H}sim7times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا