ﻻ يوجد ملخص باللغة العربية
We study the interaction energy between two surfaces, one of them flat, the other describable as the composition of a small-amplitude corrugation and a slightly curved, smooth surface. The corrugation, represented by a spatially random variable, involves Fourier wavelengths shorter than the (local) curvature radii of the smooth component of the surface. After averaging the interaction energy over the corrugation distribution, we obtain an expression which only depends on the smooth component. We then approximate that functional by means of a derivative expansion, calculating explicitly the leading and next-to-leading order terms in that approximation scheme. We analyze the resulting interplay between shape and roughness corrections for some specific corrugation models in the cases of electrostatic and Casimir interactions.
We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the $phi^4$ theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground sta
We study the fracture surface of three dimensional samples through a model for quasi-static fractures known as Born Model. We find for the roughness exponent a value of 0.5 expected for ``small length scales in microfracturing experiments. Our simula
Computational complexity is a new quantum information concept that may play an important role in holography and in understanding the physics of the black hole interior. We consider quantum computational complexity for $n$ qubits using Nielsens geomet
The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the deconfinement temperature. The curved thermodynamic metric for Quantum Chromodynamics (QCD) is evaluated on the basis of lattice data, whereas the hadron r
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterize