ﻻ يوجد ملخص باللغة العربية
We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in compute time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractible, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.
This paper presents a Graphics Processing Units (GPUs) acceleration method of an iterative scheme for gas-kinetic model equations. Unlike the previous GPU parallelization of explicit kinetic schemes, this work features a fast converging iterative sch
We report an efficient algorithm for calculating momentum-space integrals in solid state systems on modern graphics processing units (GPUs). Our algorithm is based on the tetrahedron method, which we demonstrate to be ideally suited for execution in
The Reynolds-Averaged Navier-Stokes equations and the Large-Eddy Simulation equations can be coupled using a transition function to switch from a set of equations applied in some areas of a domain to the other set in the other part of the domain. Fol
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a c
In this paper, we use graphics processing units(GPU) to accelerate sparse and arbitrary structured neural networks. Sparse networks have nodes in the network that are not fully connected with nodes in preceding and following layers, and arbitrary str