ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of strong photon-magnon coupling in a YIG-film split-ring resonant system

130   0   0.0 ( 0 )
 نشر من قبل Mikhail Kostylev
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the stripline Microwave Vector Network Analyzer Ferromagnetic Resonance and Pulsed Inductive Microwave Magnetometry spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium-iron garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9 percent at 3 GHz. Theoretically, we propose an equivalent circuit model of an SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetization dynamics in the YIG film driven by the microwave currents in the SRR. The equivalent circuit model is in good agreement with the experiment. It provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in magnetically tunable metamaterials exploiting the strong coupling of magnons to microwave photons.



قيم البحث

اقرأ أيضاً

Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and a yttrium iron garnet (YIG) film. The split-ring resonantor is defined by optical lithography and loaded with a 1 $mu$m-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and photon modes is found with a coupling strength of $g_text{eff}/2 pi = 63$ MHz. The combined BLS and MA data allows to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.
We experimentally study the magnon-photon coupling in a system consitsing of the compensating ferrimagnet gadolinium iron garnet (GdIG) and a three-dimensional microwave cavity. The temperature is varied in order to tune the GdIG magnetization and to observe the transition from the weak coupling regime to the strong coupling regime. By measuring and modelling the complex reflection parameter of the system the effective coupling rate g eff and the magnetization M eff of the sample are extracted. Comparing g eff with the magnon and the cavity decay rate we conclude that the strong coupling regime is easily accessible using GdIG. We show that the effective coupling strength follows the predicted square root dependence on the magnetization.
Peculiar ring gap modes on the surface of disk close to the metallic thin film are excited in the visible light regime. We apply plasmon hybridization method to illustrate the ring gap modes arising from the interaction between localized disk plasmon s and continuum surface plasmons, which cannot be easily excited by the plane wave with polarization parallel to the film interface. In the coupled system, the hybrid modes energy and the surface charge distribution of nanoparticle are investigated both in simulation and hybridization method, showing consistence with each other. The excitation of ring gap modes provides further insight into strong coupling of the plasmon and the design of novel nanostructures.
We report thermal control of mode hybridization between the ferromagnetic resonance (FMR) and a planar resonator (notch filter) working at 4.74 GHz. The chosen magnetic material is a ferrimagnetic insulator (Yttrium Iron Garnet: YIG) covered by 6 nm of platinum (Pt). A current induced heating method has been used in order to enhance the temperature of the YIG/Pt system. The device permits us to control the transmission spectra and the magnon-photon coupling strength at room temperature. These experimental findings reveal potentially applicable tunable microwave filtering function.
690 - Ivan S. Maksymov 2018
Achieving quantum-level control over electromagnetic waves, magnetisation dynamics, vibrations and heat is invaluable for many practical application and possible by exploiting the strong radiation-matter coupling. Most of the modern strong microwave photon-magnon coupling developments rely on the integration of metal-based microwave resonators with a magnetic material. However, it has recently been realised that all-dielectric resonators made of or containing magneto-insulating materials can operate as a standalone strongly-coupled system characterised by low dissipation losses and strong local microwave field enhancement. Here, after a brief overview of recent developments in the field, I discuss examples of such dielectric resonant systems and demonstrate their ability to operate as multiresonant antennas for light, microwaves, magnons, sound, vibrations and heat. This multiphysics behaviour opens up novel opportunities for the realisation of multiresonant coupling such as, for example, photon-magnon-phonon coupling. I also propose several novel systems in which strong photon-magnon coupling in dielectric antennas and similar structures is expected to extend the capability of existing devices or may provide an entirely new functionality. Examples of such systems include novel magnetofluidic devices, high-power microwave power generators, and hybrid devices exploiting the unique properties of electrical solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا