ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry of re-entrant tetragonal phase in Ba1-xNaxFe2As2: Magnetic versus orbital ordering mechanism

153   0   0.0 ( 0 )
 نشر من قبل Dmitry Khalyavin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-structural phase transitions in Ba1-xAxFe2As2 (A = K, Na) materials are discussed for both magnetically and orbitally driven mechanisms, using a symmetry analysis formulated within the Landau theory of phase transitions. Both mechanisms predict identical orthorhombic space-group symmetries for the nematic and magnetic phases observed over much of the phase diagram, but they predict different tetragonal space-group symmetries for the newly discovered re-entrant tetragonal phase in Ba1-xNaxFe2As2 (x ~ 0.24-0.28). In a magnetic scenario, magnetic order with moments along the c-axis, as found experimentally, does not allow any type of orbital order, but in an orbital scenario, we have determined two possible orbital patterns, specified by P4/mnc1 and I4221 space groups, which do not require atomic displacements relative to the parent I4/mmm1 symmetry and, in consequence, are indistinguishable in conventional diffraction experiments. We demonstrate that the three possible space groups are however, distinct in resonant X-ray Bragg diffraction patterns created by Templeton & Templeton scattering. This provides an experimental method of distinguishing between magnetic and orbital models.



قيم البحث

اقرأ أيضاً

The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally-ordered system. By using the LDA+dynamical mean-field theory (DMFT) method, we investigate the mechanism for orbital-ordering (OO) in this material. We show that the pur ely electronic Kugel-Khomskii super-exchange mechanism (KK) alone leads to a remarkably large transition temperature of T_KK about 350 K. However, orbital-order is experimentally believed to persist to at least 800 K. Thus Jahn-Teller distortions are essential for stabilizing orbital-order at such high temperatures.
Spin-resonance modes (SRM) are taken as evidence for magnetically driven pairing in Fe-based superconductors, but their character remains poorly understood. The broadness, the splitting and the spin-space anisotropies of SRMs contrast with the mostly accepted interpretation as spin excitons. We study hole-doped Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ that displays a spin reorientation transition. This reorientation has little impact on the overall appearance of the resonance excitations with a high-energy isotropic and a low-energy anisotropic mode. However, the strength of the anisotropic low-energy mode sharply peaks at the highest doping that still exhibits magnetic ordering resulting in the strongest SRM observed in any Fe-based superconductor so far. This remarkably strong SRM is accompanied by a loss of about half of the magnetic Bragg intensity upon entering the SC phase. Anisotropic SRMs thus can allow the system to compensate for the loss of exchange energy arising from the reduced antiferromagnetic correlations within the SC state.
We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs$_{2}$AgF$_{4}$. After self-consistently determining the harmonic and anharmonic Jahn-Teller d istortions, we show that the anharmonic distortion stabilizes the staggered x$^{2}$-z$^{2}$/y$^{2}$-z$^{2}$ orbital and ferromagnetic ground state, rather than the antiferromagnetic one. The amplitudes of lattice distortions, Q$_{2}$ and Q$_{3}$, the magnetic coupling strengthes, J$_{x,y}$, and the magnetic moment, are in good agreement with the experimental observation.
We consider the superexchange in `frustrated Jahn-Teller systems, such as the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which transition metal ions with doubly degenerate orbitals form a triangular or pyrochlore lattice and are conn ected by the 90-degree metal-oxygen-metal bonds. We show that this interaction is much different from a more familiar exchange in systems with the 180-degree bonds, e.g. perovskites. In contrast to the strong interplay between the orbital and spin degrees of freedom in perovskites, in the 90-degree exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Due to frustration, the mean-field orbital ground state is strongly degenerate. Quantum orbital fluctuations select particular ferro-orbital states, such as the one observed in NaNiO_2. We also discuss why LiNiO_2 may still behave as an orbital liquid.
We have performed x-ray linear and circular magnetic dichroism experiments at the Mn L2,3-edge of the La0.7Sr0.3MnO3 ultra thin films. Our measurements show that the antiferromagnetic (AF) insulating phase is stabilized by the interfacial rearrangeme nt of the Mn 3d orbitals, despite the relevant magnetostriction anisotropic effect on the double-exchange ferromagnetic (FM) metallic phase. As a consequence, the Mn atomic magnetic moment orientation and how it reacts to strain differ in the FM and AF phases. In some cases a FM insulating (FMI) phase adds to the AF and FM. Its peculiar magnetic properties include in-plane magnetic anisotropy and partial release of the orbital moment quenching. Nevertheless the FMI phase appears little coupled to the other ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا