ترغب بنشر مسار تعليمي؟ اضغط هنا

MoS2: a Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene

208   0   0.0 ( 0 )
 نشر من قبل Eva Y. Andrei
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the enduring challenges in graphene research and applications is the extreme sensitivity of its charge carriers to external perturbations, especially those introduced by the substrate. The best available substrates to date, graphite and hBN, still pose limitations: graphite being metallic does not allow gating, while both hBN and graphite having lattice structures closely matched to that of graphene, may cause significant band structure reconstruction. Here we show that the atomically smooth surface of exfoliated MoS2 provides access to the intrinsic electronic structure of graphene without these drawbacks. Using scanning tunneling microscopy and Landau-level spectroscopy in a device configuration which allows tuning the carrier concentration, we find that graphene on MoS2 is ultra-flat producing long mean free paths, while avoiding band structure reconstruction. Importantly, the screening of the MoS2 substrate can be tuned by changing the position of the Fermi energy with relatively low gate voltages. We show that shifting the Fermi energy from the gap to the edge of the conduction band gives rise to enhanced screening and to a substantial increase in the mean-free-path and quasiparticle lifetime. MoS2 substrates thus provide unique opportunities to access the intrinsic electronic properties of graphene and to study in situ the effects of screening on electron-electron interactions and transport.



قيم البحث

اقرأ أيضاً

We probe the local inhomogeneities of the electronic properties of graphene at the nanoscale using scanning probe microscopy techniques. First, we focus on the study of the electronic inhomogeneities caused by the graphene-substrate interaction in gr aphene samples exfoliated on silicon oxide. We find that charged impurities, present in the graphene-substrate interface, perturb the carrier density significantly and alter the electronic properties of graphene. This finding helps to understand the observed device-to-device variation typically observed in graphene-based electronic devices. Second, we probe the effect of chemical modification in the electronic properties of graphene, grown by chemical vapour deposition on nickel. We find that both the chemisorption of hydrogen and the physisorption of porphyrin molecules strongly depress the conductance at low bias indicating the opening of a bandgap in graphene, paving the way towards the chemical engineering of the electronic properties of graphene.
We present a comparative study of high carrier density transport in mono-, bi-, and trilayer graphene using electric-double-layer transistors to continuously tune the carrier density up to values exceeding 10^{14} cm^{-2}. Whereas in monolayer the co nductivity saturates, in bi- and trilayer flling of the higher energy bands is observed to cause a non-monotonic behavior of the conductivity, and a large increase in the quantum capacitance. These systematic trends not only show how the intrinsic high-density transport properties of graphene can be accessed by field-effect, but also demonstrate the robustness of ion-gated graphene, which is crucial for possible future applications.
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel d is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its 4-band and 2-band continuum approximations, and the 4-band model is shown to be always a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, either made out of SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point to understand the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, as the second-nearest-neighbor hopping energies $t$ (in-plane) and $gamma_{4}$ (inter-layer), and the on-site energy $Delta$.
179 - Zhuhua Zhang , , Wanlin Guo 2009
We show by first-principles calculations that the electronic properties of zigzag graphene nanoribbons (Z-GNRs) adsorbed on Si(001) substrate strongly depend on ribbon width and adsorption orientation. Only narrow Z-GNRs with even rows of zigzag chai ns across their width adsorbed perpendicularly to the Si dimer rows possess an energy gap, while wider Z-GNRs are metallic due to width-dependent interface hybridization. The Z-GNRs can be metastably adsorbed parallel to the Si dimer rows, but show uniform metallic nature independent of ribbon width due to adsorption induced dangling-bond states on the Si surface.
119 - F. Molitor , D. Graf , C. Stampfer 2007
Graphite is a well-studied material with known electronic and optical properties. Graphene, on the other hand, which is just one layer of carbon atoms arranged in a hexagonal lattice, has been studied theoretically for quite some time but has only re cently become accessible for experiments. Here we demonstrate how single- and multi-layer graphene can be unambiguously identified using Raman scattering. Furthermore, we use a scanning Raman set-up to image few-layer graphene flakes of various heights. In transport experiments we measure weak localization and conductance fluctuations in a graphene flake of about 7 monolayer thickness. We obtain a phase-coherence length of about 2 $mu$m at a temperature of 2 K. Furthermore we investigate the conductivity through single-layer graphene flakes and the tuning of electron and hole densities via a back gate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا