ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressed epidemics in multi-relational networks

111   0   0.0 ( 0 )
 نشر من قبل Ming Tang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1-p, respectively. The fraction of infected nodes rho(p) shows a non-monotonic behavior, with rho drops with p for small p and increases for large p. For small to moderate w1/w0 ratios, rho(p) exhibits a minimum that signifies an optimal suppression. For large w1/w0 ratios, the suppression leads to an absorbing phase consisting only of healthy nodes within a range p_L =< p =< p_R, and an active phase with mixed infected and healthy nodes for p < p_L and p>p_R. A mean field theory that ignores spatial correlation is shown to give qualitative agreement and capture all the key features. A physical picture that emphasizes the intricate interplay between infections via w0 links and within clusters formed by nodes carrying the w1 links is presented. The absorbing state at large w1/w0 ratios results when the clusters are big enough to disrupt the spread via w0 links and yet small enough to avoid an epidemic within the clusters. A theory that uses the possible local environments of a node as variables is formulated. The theory gives results in good agreement with simulation results, thereby showing the necessity of including longer spatial correlations.



قيم البحث

اقرأ أيضاً

102 - Dan Lu 2016
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to i ts original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate ${lambda_{2}}$ during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is ${lambda_{1}}$ in the rest of time. Through simulations and theoretical analysis, we find that even for ${lambda_{2}<lambda_{c}}$, epidemics eventually could bounce back if control duration is below a threshold. This critical control time for epidemic resilience, i.e., ${cd_{max}}$ can be predicted by the diameter (${d}$) of the underlying network, with the quantitative relation ${cd_{max}sim d^{alpha}}$. Our findings can help to design a better mitigation strategy for epidemics.
To improve the accuracy of network-based SIS models we introduce and study a multilayer representation of a time-dependent network. In particular, we assume that individuals have their long-term (permanent) contacts that are always present, identifyi ng in this way the first network layer. A second network layer also exists, where the same set of nodes can be connected by occasional links, created with a given probability. While links of the first layer are permanent, a link of the second layer is only activated with some probability and under the condition that the two nodes, connected by this link, are simultaneously participating to the temporary link. We develop a model for the SIS epidemic on this time-dependent network, analyze equilibrium and stability of the corresponding mean-field equations, and shed some light on the role of the temporal layer on the spreading process.
Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gather ings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.
In this letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations (DDEs), which shows excellent agreement with results based on explicit stochastic simulations of non-Markovian epidemics on networks. Furthermore, we analytically compute a new R0-like threshold quantity and an implicit analytical relation between this and the final epidemic size. In addition we show that the pairwise model and the analytic calculations can be generalized in terms of integro-differential equations to any distribution of the infectious period, and we illustrate this by presenting a closed form expression for the final epidemic size. By showing the rigorous mathematical link between non-Markovian network epidemics and pairwise DDEs, we provide the framework for a deeper and more rigorous understanding of the impact of non-Markovian dynamics with explicit results for final epidemic size and threshold quantities.
Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent friendship, kinship, or collaboration, bu t not all of them together. In contrast, a multi-relational network is a network with a heterogeneous set of edge labels which can represent relationships of various types in a single data structure. While multi-relational networks are more expressive in terms of the variety of relationships they can capture, there is a need for a general framework for transferring the many single-relational network analysis algorithms to the multi-relational domain. It is not sufficient to execute a single-relational network analysis algorithm on a multi-relational network by simply ignoring edge labels. This article presents an algebra for mapping multi-relational networks to single-relational networks, thereby exposing them to single-relational network analysis algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا