ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining dark sector perturbations II: ISW and CMB lensing tomography

138   0   0.0 ( 0 )
 نشر من قبل Bjoern Soergel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Any Dark Energy (DE) or Modified Gravity (MG) model that deviates from a cosmological constant requires a consistent treatment of its perturbations, which can be described in terms of an effective entropy perturbation and an anisotropic stress. We have considered a recently proposed generic parameterisation of DE/MG perturbations and compared it to data from the Planck satellite and six galaxy catalogues, including temperature-galaxy (Tg), CMB lensing-galaxy and galaxy-galaxy (gg) correlations. Combining these observables of structure formation with tests of the background expansion allows us to investigate the properties of DE/MG both at the background and the perturbative level. Our constraints on DE/MG are mostly in agreement with the cosmological constant paradigm, while we also find that the constraint on the equation of state w (assumed to be constant) depends on the model assumed for the perturbation evolution. We obtain $w=-0.92^{+0.20}_{-0.16}$ (95% CL; CMB+gg+Tg) in the entropy perturbation scenario; in the anisotropic stress case the result is $w=-0.86^{+0.17}_{-0.16}$. Including the lensing correlations shifts the results towards higher values of w. If we include a prior on the expansion history from recent Baryon Acoustic Oscillations (BAO) measurements, we find that the constraints tighten closely around $w=-1$, making it impossible to measure any DE/MG perturbation evolution parameters. If, however, upcoming observations from surveys like DES, Euclid or LSST show indications for a deviation from a cosmological constant, our formalism will be a useful tool towards model selection in the dark sector.



قيم البحث

اقرأ أيضاً

We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so -called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
The imprints of large-scale structures on the Cosmic Microwave Background can be studied via the CMB lensing and Integrated Sachs-Wolfe (ISW) signals. In particular, the stacked ISW signal around supervoids has been claimed in several works to be ano malously high. In this study, we find cluster and void superstructures using four tomographic redshift bins with $0<z<0.8$ from the DESI Legacy Survey, and measure the stacked CMB lensing and ISW signals around them. To compare our measurements with $Lambda$CDM model predictions, we construct a mock catalogue with matched galaxy number density and bias, and apply the same photo-$z$ uncertainty as the data. The consistency between the mock and data is verified via the stacked galaxy density profiles around the superstructures and their quantity. The corresponding lensing convergence and ISW maps are then constructed and compared. The stacked lensing signal agrees with data well except at the highest redshift bin in density peaks, where the mock prediction is significantly higher, by approximately a factor 1.3. The stacked ISW signal is generally consistent with the mock prediction. We do not obtain a significant signal from voids, $A_{rm ISW}=-0.10pm0.69$, and the signal from clusters, $A_{rm ISW}=1.52pm0.72$, is at best weakly detected. However, these results are strongly inconsistent with previous claims of ISW signals at many times the level of the $Lambda$CDM prediction. We discuss the comparison of our results with past work in this area, and investigate possible explanations for this discrepancy.
We seek to clarify the origin of constraints on the dark energy equation of state parameter from CMB lensing tomography, that is the combination of galaxy clustering and the cross-correlation of galaxies with CMB lensing in a number of redshift bins. In particular, we consider the two-point correlation functions which can be formed with a catalog of galaxy locations and photometric redshifts from the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) and CMB lensing maps from the CMB-S4 experiment. We focus on the analytic understanding of the origin of the constraints. Dark energy information in these data arises from the influence of three primary relationships: distance as a function of redshift (geometry), the amplitude of the power spectrum as a function of redshift (growth), and the power spectrum as a function of wavenumber (shape). We find that the effects from geometry and growth play a significant role and partially cancel each other out, while the shape effect is unimportant. We also show that Dark Energy Task Force (DETF) Figure of Merit (FoM) forecasts from the combination of LSST galaxies and CMB-S4 lensing are comparable to the forecasts from cosmic shear in the absence of the CMB lensing map, thus providing an important independent check. Compared to the forecasts with the LSST galaxies alone, combining CMB lensing and LSST clustering information (together with the primary CMB spectra) increases the FoM by roughly a factor of 3-4 in the optimistic scenario where systematics are fully under control. We caution that achieving these forecasts will likely require a full analysis of higher-order biasing, photometric redshift uncertainties, and stringent control of other systematic limitations, which are outside the scope of this work, whose primary purpose is to elucidate the physical origin of the constraints.
A recently proposed technique allows one to constrain both the background and perturbation cosmological parameters through the distribution function of supernova Ia apparent magnitudes. Here we extend this technique to alternative cosmological scenar ios, in which the growth of structure does not follow the $Lambda$CDM prescription. We apply the method first to the supernova data provided by the JLA catalog combined with all the current independent redshift distortion data and with low-redshift cluster data from Chandra and show that although the supernovae alone are not very constraining, they help in reducing the confidence regions. Then we apply our method to future data from LSST and from a survey that approximates the Euclid satellite mission. In this case we show that the combined data are nicely complementary and can constrain the normalization $sigma_8$ and the growth rate index $gamma$ to within $0.6%$ and $7%$, respectively. In particular, the LSST supernova catalog is forecast to give the constraint $gamma (sigma_8/0.83)^{6.7} = 0.55 pm 0.1$. We also report on constraints relative to a step-wise parametrization of the growth rate of structures. These results show that supernova lensing serves as a good cross-check on the measurement of perturbation parameters from more standard techniques.
We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SP T). When using the DES main galaxy sample over the full redshift range $0.2 < z < 1.2$, a cross-correlation signal is detected at $6 sigma$ and $4sigma$ with SPT and Planck respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant ($>$$2 sigma$) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the $z<1.2$ universe is $0.73 pm 0.16$ times as large as predicted in the LCDM Planck cosmology, a $1.7sigma$ deviation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا