ترغب بنشر مسار تعليمي؟ اضغط هنا

Do cluster properties affect the quenching rate?

155   0   0.0 ( 0 )
 نشر من قبل Anand Raichoor
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is hampered by systematics, induced by noisy estimates of cluster mass or by the lack of control on galaxy stellar mass, which may mask existing trends or introduce fake trends. We studied a sample of local clusters (20 with 0.02<z<0.1 and log(M200/Msun)>14), selected independent of the galaxy properties under study, having homogeneous optical photometry and X-ray estimated properties. Using those top quality measurements of cluster mass, hence of cluster scale, richness, iron abundance, and cooling time/presence of a cool-core, we study the simultaneous dependence of quenching on these cluster properties on galaxy stellar mass M and normalised cluster-centric distance r/r200. We found that the quenching rate can be completely described by two variables only, galaxy stellar mass and normalised cluster-centric distance, and is independent of halo properties (mass, richness, iron abundance, presence of a cool-core, and central cooling time). These halo properties change, in most cases, by less than 3% the probability that a galaxy is quenched, once the mass-size (M200-r200) scaling relation is accounted for through cluster-centric distance normalisation.



قيم البحث

اقرأ أيضاً

While the stellar Initial Mass Function (IMF) appears to be close to universal within the Milky Way galaxy, it is strongly suspected to be different in the primordial Universe, where molecular hydrogen cooling is less efficient and the gas temperatur e can be higher by a factor of 30. In between these extreme cases, the gas temperature varies depending on the environment, metallicity and radiation background. In this paper we explore if changes of the gas temperature affect the IMF of the stars considering fragmentation and accretion. The fragmentation behavior depends mostly on the Jeans mass at the turning point in the equation of state where a transition occurs from an approximately isothermal to an adiabatic regime due to dust opacities. The Jeans mass at this transition in the equation of state is always very similar, independent of the initial temperature, and therefore the initial mass of the fragments is very similar. Accretion on the other hand is strongly temperature dependent. We argue that the latter becomes the dominant process for star formation efficiencies above 5 - 7 %, increasing the average mass of the stars.
Wave dark matter ($psi$DM) predicts a compact soliton core and a granular halo in every galaxy. This work presents the first simulation study of an elliptical galaxy by including both stars and $psi$DM, focusing on the systematic changes of the centr al soliton and halo granules. With the addition of stars in the inner halo, we find the soliton core consistently becomes more prominent by absorbing mass from the host halo than that without stars, and the halo granules become non-isothermal, hotter in the inner halo and cooler in the outer halo, as opposed to the isothermal halo in pure $psi$DM cosmological simulations. Moreover, the composite (star+$psi$DM) mass density is found to follow a $r^{-2}$ isothermal profile near the half-light radius in most cases. Most striking is the velocity dispersion of halo stars that increases rapidly toward the galactic center by a factor of at least 2 inside the half-light radius caused by the deepened soliton gravitational potential, a result that compares favorably with observations of elliptical galaxies and bulges in spiral galaxies. However in some rare situations we find a phase segregation turning a compact distribution of stars into two distinct populations with high and very low velocity dispersions; while the high-velocity component mostly resides in the halo, the very low-velocity component is bound to the interior of the soliton core, resembling stars in faint dwarf spheroidal galaxies.
To understand how systems of star clusters have reached their presently observed properties constitutes a powerful probe into the physics of cluster formation, without needing to resort to high spatial resolution observations of individual cluster-fo rming regions (CFRg) in distant galaxies. In this contribution I focus on the mass-radius relation of CFRgs, how it can be uncovered by studying the gas expulsion phase of forming star clusters, and what the implications are. I demonstrate that, through the tidal field impact upon exposed star clusters, the CFRg mass-radius relation rules cluster infant weight-loss in dependence of cluster mass. The observational constraint of a time-invariant slope for the power-law young cluster mass function is robustly satisfied by CFRgs with a constant mean volume density. In contrast, a constant mean surface density would be conducive to the preferential destruction of high-mass clusters. A purely dynamical line-of-reasoning leads therefore to a conclusion consistent with star formation a process driven by a volume density threshold. Developing this concept further, properties of molecular clumps and CFRgs naturally get dissociated. This allows to understand: (i) why the star cluster mass function is steeper than the molecular cloud (clump) mass function; (ii) the presence of a massive star formation limit in the mass-size space of molecular structures.
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15<z<0.30, combining wide-field Spitzer 24um and GALEX NUV imaging with highly-complete spectroscopy of cluster members. The fraction ( f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44-sigma_v at 0.3r500, and is 10--35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ~0.5--2Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which SFRs decline exponentially on quenching time-scales of 1.73pm0.25 Gyr upon accretion into the cluster.
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mas s if the contribution of the binary orbital motion is not taken into account. In these proceedings we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch the issue of selection effects. We find that for clusters with a measured velocity dispersion of sigma > 10 km/s the presence of binaries does not affect the dynamical mass significantly. For clusters with sigma < 1 km/s (i.e., low-density clusters), the contribution of binaries to sigma is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Delta log(L/Mdyn) = 0.05-0.4 in the log(L/Mdyn) vs. age diagram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا