ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

175   0   0.0 ( 0 )
 نشر من قبل Rafael T. Eufrasio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drive the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution (SED) of 17, 10 kpc diameter, regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate (SFR) due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micron) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.



قيم البحث

اقرأ أيضاً

We present a detailed study of the flocculent spiral galaxy NGC 7793, part of the Sculptor group. By analyzing the resolved stellar populations of the galaxy, located at a distance of ~3.7 Mpc, we infer for the first time its radial star formation hi story (SFH) from Hubble Space Telescope photometry, thanks to both archival and new data from the Legacy ExtraGalactic UV Survey. We determine an average star formation rate (SFR) for the galaxy portion covered by our F555W and F814W data of 0.23 +- 0.02 Msun/yr over the whole Hubble time, corresponding to a total stellar mass of 3.09 +- 0.33 x 10^9 Msun in agreement with previous determinations. Thanks to the new data extending to the F336W band, we are able to analyze the youngest stellar populations with a higher time resolution. Most importantly, we recover the resolved SFH in different radial regions of the galaxy; this shows an indication of a growing trend of the present-to-past SFR ratio, increasing from internal to more external regions, supporting previous findings of the inside-out growth of the galaxy.
We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep HST photometry obtained with the Legacy ExtraGalactic UV Survey (LEGUS). We apply a contour-based map analysis t echnique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95% being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviors, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ~1.7 for length-scales between ~20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60% of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behavior in a time-scale of ~60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.
We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep HST photometry with the Legacy ExtraGalactic UV Survey (LEGUS). Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power-law as expected from scale-free processes. We explain this shape with a simple fragmentation and enrichment model. The hierarchical morphology of the complexes is confirmed by their mass--size relation which can be represented by a power-law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a log-normal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently-formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age-difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This timescale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.
We present new $^{12}$CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The H$alpha$ images of barred spiral galaxies often show act ive star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2$farcm$3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution ($sim$ 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.
We investigate the star formation histories (SFHs) of massive red spiral galaxies with stellar mass $M_ast>10^{10.5}M_odot$, and make comparisons with blue spirals and red ellipticals of similar masses. We make use of the integral field spectroscopy from the SDSS-IV/DR15 MaNGA sample, and estimate spatially resolved SFHs and stellar population properties of each galaxy by applying a Bayesian spectral fitting code to the MaNGA spectra. We find that both red spirals and red ellipticals have experienced only one major star formation episode at early times, and the result is independent of the adopted SFH model. On average, more than half of their stellar masses were formed $>$10 Gyrs ago, and more than 90% were formed $>6$ Gyrs ago. The two types of galaxies show similarly flat profiles in a variety of stellar population parameters: old stellar ages indicated by $D4000$ (the spectral break at around 4000AA), high stellar metallicities, large Mgb/Fe ratios indicating fast formation, and little stellar dust attenuation. In contrast, although blue spirals also formed their central regions $>$10 Gyrs ago, both their central regions and outer disks continuously form stars over a long timescale. Our results imply that, massive red spirals are likely to share some common processes of formation (and possibly quenching) with massive red ellipticals in the sense that both types were formed at $z > 2$ through a fast formation process.Possible mechanisms for the formation and quenching of massive red spirals are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا