ﻻ يوجد ملخص باللغة العربية
We analyzed the Einstein radius, $theta_E$, in our sample of SL2S galaxy groups, and compared it with $R_A$ (the distance from the arcs to the center of the lens), using three different approaches: 1.- the velocity dispersion obtained from weak lensing assuming a Singular Isothermal Sphere profile ($theta_{E,I}$), 2.- a strong lensing analytical method ($theta_{E,II}$) combined with a velocity dispersion-concentration relation derived from numerical simulations designed to mimic our group sample, 3.- strong lensing modeling ($theta_{E,III}$) of eleven groups (with four new models presented in this work) using HST and CFHT images. Finally, $R_A$ was analyzed as a function of redshift $z$ to investigate possible correlations with L, N, and the richness-to-luminosity ratio (N/L). We found a correlation between $theta_{E}$ and $R_A$, but with large scatter. We estimate $theta_{E,I}$ = (2.2 $pm$ 0.9) + (0.7 $pm$ 0.2)$R_A$, $theta_{E,II}$ = (0.4 $pm$ 1.5) + (1.1 $pm$ 0.4)$R_A$, and $theta_{E,III}$ = (0.4 $pm$ 1.5) + (0.9 $pm$ 0.3)$R_A$ for each method respectively. We found a weak evidence of anti-correlation between $R_A$ and $z$, with Log$R_A$ = (0.58$pm$0.06) - (0.04$pm$0.1)$z$, suggesting a possible evolution of the Einstein radius with $z$, as reported previously by other authors. Our results also show that $R_A$ is correlated with L and N (more luminous and richer groups have greater $R_A$), and a possible correlation between $R_A$ and the N/L ratio. Our analysis indicates that $R_A$ is correlated with $theta_E$ in our sample, making $R_A$ useful to characterize properties like L and N (and possible N/L) in galaxy groups. Additionally, we present evidence suggesting that the Einstein radius evolves with $z$.
In the era of large surveys, yielding thousands of galaxy clusters, efficient mass proxies at all scales are necessary in order to fully utilize clusters as cosmological probes. At the cores of strong lensing clusters, the Einstein radius can be turn
We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group (FG) candidates identified in our previous work using SDSS and RASS data. Four candidates (out of six) exhibit extended X-ray emission, confirming them as true FGs. For the
Some observations such as those presented in Walker et al. show that the observed entropy profiles of the intra-cluster medium (ICM) deviate from the power-law prediction of adiabatic simulations. This implies that non-gravitational processes, which
We critically examine the methodology behind the claimed observational detection of halo assembly bias using optically selected galaxy clusters by Miyatake et al. (2016) and More et al. (2016). We mimic the optical cluster detection algorithm and app
We present Hubble Space Telescope (HST) imaging data and CFHT Near IR ground-based images for the final sample of 56 candidate galaxy-scale lenses uncovered in the CFHT Legacy Survey as part of the Strong Lensing in the Legacy Survey (SL2S) project.