ﻻ يوجد ملخص باللغة العربية
(Abridged) We study the incidence, as well as the nature, of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterised. We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We call secular-built to composite bulges made of entirely by structures associated with secular processes such as pseudo bulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built bulges are those where structures with different formation paths coexist within the same galaxy, i.e., a classical bulge coexisting with a secular-built structure (pseudobulge, central disk, or B/P). Three bulges of this kind were found in the sample. We remark on the importance of detecting kinematic structures such as sigma-drops to identify composite bulges. A large fraction (80%) of galaxies were found to host sigma-drops or sigma-plateaus in our sample revealing their high incidence in barred galaxies. The high frequency of composite bulges in barred galaxies points towards a complex formation and evolutionary scenario. Moreover, the evidence for coexisting merger- and secular-built bulges reinforce this idea. We discuss how the presence of different bulge types, with different formation histories and timescales, can constrain current models of bulge formation.
S0 galaxies are known to host classical bulges with a broad range of size and mass, while some such S0s are barred and some not. The origin of the bars has remained as a long-standing problem -- what made bar formation possible in certain S0s? By a
Bulges are of different types, morphologies and kinematics, from pseudo-bulges, close to disk properties (Sersic index, rotation fraction, flatenning), to classical de Vaucouleurs bulges, close to elliptical galaxies. Secular evolution and bar develo
We present detailed morphological, photometric, and stellar-kinematic analyses of the central regions of two massive, early-type barred galaxies with nearly identical large-scale morphologies. Both have large, strong bars with prominent inner photome
From a sample of 84 local barred, moderately inclined disc galaxies, we determine the fraction which host boxy or peanut-shaped (B/P) bulges (the vertically thickened inner parts of bars). We find that the frequency of B/P bulges in barred galaxies i
We present here a thorough photometric analysis of double-barred galaxies, consisting of i) two-dimensional photometric decompositions including a bulge, inner bar, outer bar, and (truncated) disc; and ii) three-dimensional statistical deprojections