ترغب بنشر مسار تعليمي؟ اضغط هنا

KIC7668647: a 14 day beaming sdB+WD binary with a pulsating subdwarf

161   0   0.0 ( 0 )
 نشر من قبل John Telting
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently discovered subdwarf B (sdB) pulsator KIC7668647 is one of the 18 pulsating sdB stars detected in the Kepler field. It features a rich g-mode frequency spectrum, with a few low-amplitude p-modes at short periods. We use new ground-based low-resolution spectroscopy, and the near-continuous 2.88 year Kepler lightcurve, to reveal that KIC7668647 consists of a subdwarf B star with an unseen white-dwarf companion with an orbital period of 14.2d. An orbit with a radial-velocity amplitude of 39km/s is consistently determined from the spectra, from the orbital Doppler beaming seen by Kepler at 163ppm, and from measuring the orbital light-travel delay of 27 by timing of the many pulsations seen in the Kepler lightcurve. The white dwarf has a minimum mass of 0.40 M_sun. We use our high signal-to-noise average spectra to study the atmospheric parameters of the sdB star, and find that nitrogen and iron have abundances close to solar values, while helium, carbon, oxygen and silicon are underabundant relative to the solar mixture. We use the full Kepler Q06--Q17 lightcurve to extract 132 significant pulsation frequencies. Period-spacing relations and multiplet splittings allow us to identify the modal degree L for the majority of the modes. Using the g-mode multiplet splittings we constrain the internal rotation period at the base of the envelope to 46-48d as a first seismic result for this star. The few p-mode splittings may point at a slightly longer rotation period further out in the envelope of the star. From mode-visibility considerations we derive that the inclination of the rotation axis of the sdB in KIC7668647 must be around ~60 degrees. Furthermore, we find strong evidence for a few multiplets indicative of degree 3 <= L <= 8, which is another novelty in sdB-star observations made possible by Kepler.



قيم البحث

اقرأ أيضاً

We report on Kepler photometry of the hot sdB star B4 in the open cluster NGC 6791. We confirm that B4 is a reflection effect binary with an sdB component and a low-mass main sequence companion with a circular 0.3985 d orbit. The sdB star is a g-mode pulsator (a V1093 Her star) with periods ranging from 2384 s to 7643 s. Several of the pulsation modes show symmetric splitting by 0.62 microHz. Attributing this to rotational splitting, we conclude that the sdB component has a rotation period of approximately 9.63 d, indicating that tidal synchronization has not been achieved in this system. Comparison with theoretical synchronization time provides a discriminant between various theoretical models.
Detached eclipsing binaries (dEBs) are ideal targets for accurate measurement of masses and radii of ther component stars. If at least one of the stars has evolved off the main sequence (MS), the masses and radii give a strict constraint on the age o f the stars. Several dEBs containing a bright K giant and a fainter MS star have been discovered by the Kepler satellite. The mass and radius of a red giant (RG) star can also be derived from its asteroseismic signal. The parameters determined in this way depend on stellar models and may contain systematic errors. It is important to validate the asteroseismically determined mass and radius with independent methods. This can be done when stars are members of stellar clusters or members of dEBs. KIC 8410637 consists of an RG and an MS star. The aim is to derive accurate masses and radii for both components and provide the foundation for a strong test of the asteroseismic method and the accuracy of the deduced mass, radius and age. We analyse high-resolution spectra from three different spectrographs. We also calculate a fit to the Kepler light curve and use ground-based photometry to determine the flux ratios between the component stars in the BVRI passbands. We measured the masses and radii of the stars in the dEB, and the classical parameters Teff, log g and [Fe/H] from the spectra and ground-based photometry. The RG component of KIC 8410637 is most likely in the core helium-burning red clump phase of evolution and has an age and composition very similar to the stars in the open cluster NGC 6819. The mass of the RG in KIC 8410637 should therefore be similar to the mass of RGs in NGC 6819, thus lending support to the most up-to-date version of the asteroseismic scaling relations. This is the first direct measurement of both mass and radius for an RG to be compared with values for RGs from asteroseismic scaling relations.
Most subdwarf B (sdB) + Helium white dwarf (He WD) binaries are believed to be formed from a particular channel. In this channel, the He WDs are produced first from red giants (RGs) with degenerate cores via stable mass transfer and sdB stars are pro duced from RGs with degenerate cores via common envelope (CE) ejection. They are important for the studies of CE evolution, binary evolution, and binary population synthesis. However, the relation between WD mass and orbital period of sdB + He WD binaries has not been specifically studied. In this paper, we first use a semi-analytic method to follow their formation and find a WD mass and orbital period relation. Then we use a detailed stellar evolution code to model their formation from main-sequence binaries. We find a similar relation between the WD mass and orbital period, which is in broad agreement with observations. For most sdB + He WD systems, if the WD mass (orbital period) can be determined, the orbital period (WD mass) can be inferred with this relation and then the inclination angle can be constrained with the binary mass function. In addition, we can also use this relation to constrain the CE ejection efficiency and find that a relative large CE ejection efficiency is favoured. If both the WD and sdB star masses can be determined, the critical mass ratios of dynamically unstable mass transfer for RG binaries can also be constrained.
We present the discovery of EVR-CB-004, a close binary with a remnant stellar core and an unseen white dwarf companion. The analysis in this work reveals the primary is potentially an inflated hot subdwarf (sdO) and more likely is a rarer post-blue h orizontal branch (post-BHB) star. Post-BHBs are the short-lived shell-burning final stage of a blue horizontal star or hot subdwarf before transitioning to a WD. This object was discovered using Evryscope photometric data in a southern-all-sky hot subdwarf variability survey. The photometric light curve for EVR-CB-004 shows multi-component variability from ellipsoidal deformation of the primary and from Doppler boosting as well as gravitational limb darkening. EVR-CB-004 is one of just a handful of known systems, and has a long period (6.08426 hours) and large amplitude ellipsoidal modulation (16.0 $%$ change in brightness from maximum to minimum) for these extremely close binary systems, while the properties of the primary make it a truly unique system. EVR-CB-004 also shows a peculiar low-amplitude (less than $1%$) sinusoidal light curve variation with a period that is a 1/3 resonance of the binary period. We tentatively identify this additional variation source as a tidally-induced resonant pulsation, and we suggest followup observations that could verify this interpretation. From the evolutionary state of the system, its components, and its mass fraction, EVR-CB-004 is a strong merger candidate to form a single high-mass ($approx1.2M_{odot}$) WD. EVR-CB-004 offers a glimpse into a brief phase of a remnant core evolution and secondary variation, not seen before in a compact binary.
73 - K. Woodcock 2021
$tau^{9}$ Eri is a Bp star that was previously reported to be a single-lined spectroscopic binary. Using 17 ESPaDOnS spectropolarimetric (Stokes $V$) observations we identified the weak spectral lines of the secondary component and detected a strong magnetic field in the primary. We performed orbital analysis of the radial velocities of both components to find a slightly eccentric orbit ($e= 0.129$) with a period of $5.95382(2)$ days. The longitudinal magnetic field ($B_ell$) of the primary was measured from each of the Stokes $V$ profiles, with typical error bars smaller than 10 G. Equivalent widths (EWs) of LSD profiles corresponding to only the Fe lines were also measured. We performed frequency analysis of both the $B_ell$ and EW measurements, as well as of the Hipparcos, SMEI, and TESS photometric data. All sets of photometric observations produce two clear, strong candidates for the rotation period of the Bp star: 1.21 days and 3.82 days. The $B_ell$ and EW measurements are consistent with only the 3.82-day period. We conclude that HD 25267 consists of a late-type Bp star (M= $3.6_{-0.2}^{+0.1} M_odot$, T= $12580_{-120}^{+150}$ K) with a rotation period of 3.82262(4) days orbiting with a period of 5.95382(2) days with a late-A/early-F type secondary companion (M= $1.6pm 0.1 M_odot$, T= $7530_{-510}^{+580}$ K). The Bp stars magnetic field is approximately dipolar with $i= 41pm 2^{circ}$, $beta= 158pm 5^{circ}$ and $B_{rm d}= 1040pm 50$ G. All evidence points to the strong $1.209912(3)$ day period detected in photometry, along with several other weaker photometric signals, as arising from $g$-mode pulsations in the primary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا