ﻻ يوجد ملخص باللغة العربية
We show how the two-dimensional (2D) topological insulator evolves, by stacking, into a strong or weak topological insulator with different topological indices, proposing a new conjecture that goes beyond an intuitive picture of the crossover from quantum spin Hall to the weak topological insulator. Studying the conductance under different boundary conditions, we demonstrate the existence of two conduction regimes in which conduction happens through either surface- or edge-conduction channels. We show that the two conduction regimes are complementary and exclusive. Conductance maps in the presence and absence of disorder are introduced, together with 2D $mathbb{Z}_2$-index maps, describing the dimensional crossover of the conductance from the 2D to the 3D limit. Stacking layers is an effective way to invert the gap, an alternative to controlling the strength of spin-orbit coupling. The emerging quantum spin Hall insulator phase is not restricted to the case of odd numbers of layers.
We study nonlocal resistance in an H-shaped two-dimensional HgTe/CdTe quantum well consist of injector and detector, both of which can be tuned in the quantum spin Hall or metallic spin Hall regime. Because of strong spin-orbit interaction, there alw
In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-
Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi_2Se_3 in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9times10^16cm^-3, the lowest Landau level of the
The thermoelectric response of HgTe quantum wells in the state of two-dimensional topological insulator (2D TI) has been studied experimentally. Ambipolar thermopower, typical for an electron-hole system, has been observed across the charge neutralit