ﻻ يوجد ملخص باللغة العربية
We study a dynamical mechanism that generates a composite vectorlike fermion, formed by the binding of an $N$-tuplet of elementary chiral fermions to an $N$-tuplet of scalars. Deriving the properties of the composite fermion in the large $N$ limit, we show that its mass is much smaller than the compositeness scale when the binding coupling is near a critical value. We compute the contact interactions involving four composite fermions, and find that their coefficients scale as $1/N$. Physics beyond the Standard Model may include composite vectorlike fermions arising from this mechanism.
We explore the low energy implications of an F-theory inspired $E_6$ model whose breaking yields, in addition to the MSSM gauge symmetry, a $Z$ gauge boson associated with a $U(1)$ symmetry broken at the TeV scale. The zero mode spectrum of the effec
Compared to the minimal supersymmetric standard model, an extension by vectorlike fermions is able to explain the Higgs mass while retains the grand unification. We investigate the minimal vectorlike model by focusing on the vectorlike electroweak se
We show that gauge invariant composites in the fermionic realization of $SU(N)_1$ conformal field theory explicitly exhibit the holomorphic factorization of the corresponding WZW primaries. In the $SU(2)_1$ case we show that the holomorphic sector re
The weak bosons, leptons and quarks are considered as composite particles. The interaction of the constituents is a confining gauge interaction. The standard electroweak model is a low energy approximation. The mixing of the neutral weak boson with t
In this paper, we consider a novel realization of the Dynamical Dark Matter (DDM) framework in which the ensemble of particles which collectively constitute the dark matter are the composite states of a strongly-coupled conformal field theory. Cosmol