ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective time-independent analysis for quantum kicked systems

214   0   0.0 ( 0 )
 نشر من قبل Tapomoy Guha Sarkar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent effective time-independent scenario, whereby the system is rendered integrable. The time-evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained, does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peak-like features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the non-integrable map corresponding to the actual time-dependent system in the non-chaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the non-chaotic regime at both the quantum and classical level.



قيم البحث

اقرأ أيضاً

We study multifractal properties in the spectrum of effective time-independent Hamiltonians obtained using a perturbative method for a class of delta-kicked systems. The evolution operator in the time-dependent problem is factorized into an initial k ick, an evolution dictated by a time-independent Hamiltonian, and a final kick. We have used the double kicked $SU(2)$ system and the kicked Harper model to study butterfly spectrum in the corresponding effective Hamiltonians. We have obtained a generic class of $SU(2)$ Hamiltonians showing self-similar spectrum. The statistics of the generalized fractal dimension is studied for a quantitative characterization of the spectra.
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead ing-order contribution in $hbar^2$ that is exponentially increasing with time within an intermediate, temperature-dependent, time-window. The growth-rate in such a regime is governed by the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.
We investigate precursors of critical behavior in the quasienergy spectrum due to the dynamical instability in the kicked top. Using a semiclassical approach, we analytically obtain a logarithmic divergence in the density of states, which is analogou s to a continuous excited state quantum phase transition in undriven systems. We propose a protocol to observe the cusp behavior of the magnetization close to the critical quasienergy.
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model. In this way we can apply exact diagonalization up to quite large system sizes and confirm that the system tends to ergodicity in the lar ge-size limit. In the thermodynamic limit the system is described by a set of coupled Gross-Pitaevskij equations equivalent to an effective nonlinear single-rotor Hamiltonian. These equations give rise to a power-law increase in time of the energy with exponent $gammasim 2/3$ in a wide range of parameters. We explain this finding by means of a master-equation approach based on the noisy behaviour of the effective nonlinear single-rotor Hamiltonian and on the Anderson localization of the single-rotor Floquet states. Furthermore, we study chaos by means of the largest Lyapunov exponent and find that it decreases towards zero for portions of the phase space with increasing momentum. Finally, we show that some stroboscopic Floquet integrals of motion of the noninteracting dynamics deviate from their initial values over a time scale related to the interaction strength according to the Nekhoroshev theorem.
We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppress ed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation for delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters the average kinetic energy can be quasi periodic or, fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing trembling motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا