ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the dc inverse spin Hall effect due to spin pumping in a novel meander-stripline geometry

249   0   0.0 ( 0 )
 نشر من قبل Mathias Weiler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dc voltage obtained from the inverse spin Hall effect (iSHE) due to spin pumping in ferromagnet/normal-metal (NM) bilayers can be unintentionally superimposed with magnetoresistive rectification of ac charge currents in the ferromagnetic layer. We introduce a geometry in which these spurious rectification voltages vanish while the iSHE voltage is maximized. In this geometry, a quantitative study of the dc iSHE is performed in a broad frequency range for Permalloy/NM multilayers with NM={Pt, Ta, Cu/Au, Cu/Pt}. The experimentally recorded voltages can be fully ascribed to the iSHE due to spin pumping. Furthermore we measure a small iSHE voltage in single CoFe thin films.



قيم البحث

اقرأ أيضاً

An intriguing feature of spintronics is the use of pure spin-currents to manipulate magnetization, e.g., spin-currents can switch magnetization in spin-torque MRAM, a next-generation DRAM alternative. Giant spin-currents via the spin Hall effect grea tly expand the technological opportunities. Conversely, a ferromagnet/normal metal junction emits spin-currents under microwave excitation, i.e. spin-pumping. While such spin-currents are modulated at the excitation frequency, there is also a non-linear, rectified component that is commonly detected using the corresponding inverse spin Hall effect (iSHE) dc voltage. However, the ac component should be more conducive for quantitative analysis, as it is up to two orders of magnitude larger and linear. But any device that uses the ac iSHE is also sensitive to inductive signals via Faradays Law and discrimination of the ac iSHE signal must rely on phase-sensitive measurements. We use the inductive signal as a reference for a quantitative measurement of the magnitude and phase of the ac iSHE.
High spin to charge conversion efficiency is the requirement for the spintronics devices which is governed by spin pumping and inverse spin Hall effect (ISHE). In last one decade, ISHE and spin pumping are heavily investigated in ferromagnet/ heavy m etal (HM) heterostructures. Recently antiferromagnetic (AFM) materials are found to be good replacement of HMs because AFMs exhibit terahertz spin dynamics, high spin-orbit coupling, and absence of stray field. In this context we have performed the ISHE in CoFeB/ IrMn heterostructures. Spin pumping study is carried out for $Co_{40}Fe_{40}B_{20} (12 nm)/ Cu (3 nm)/ Ir_{50}Mn_{50} (t nm)/ AlO_{x} (3 nm)$ samples where textit{t} value varies from 0 to 10 nm. Damping of all the samples are higher than the single layer CoFeB which indicates that spin pumping due to IrMn is the underneath mechanism. Further the spin pumping in the samples are confirmed by angle dependent ISHE measurements. We have also disentangled other spin rectifications effects and found that the spin pumping is dominant in all the samples. From the ISHE analysis the real part of spin mixing conductance (textit{$g_{r}^{uparrow downarrow}$}) is found to be 0.704 $pm$ 0.003 $times$ $10^{18}$ $m^{-2}$.
Pure spin current based research is mostly focused on ferromagnet (FM)/heavy metal (HM) system. Because of the high spin orbit coupling (SOC) these HMs exhibit short spin diffusion length and therefore possess challenges for device application. Low S OC (elements of light weight) and large spin diffusion length make the organic semiconductors (OSCs) suitable for future spintronic applications. From theoretical model it is explained that, due to $pi$ - $sigma$ hybridization the curvature of the C$_{60}$ molecules may increase the SOC strength. Here, we have investigated spin pumping and inverse spin hall effect (ISHE) in CoFeB/C$_{60}$ bilayer system using coplanar wave guide based ferromagnetic resonance (CPW-FMR) set-up. We have performed angle dependent ISHE measurement to disentangle the spin rectification effects for example anisotropic magnetoresistance, anomalous Hall effect etc. Further, effective spin mixing conductance (g$_{eff}^{uparrowdownarrow}$) and spin Hall angle ($theta_{SH}$) for C$_{60}$ have been reported here. The evaluated value for $theta_{SH}$ is 0.055.
The polarization of the spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant component parallel to the precession axis and a rotating one normal to the magnetization. The former component is now routinely detec ted in the form of a DC voltage induced by the inverse spin Hall effect (ISHE). Here we compute AC-ISHE voltages much larger than the DC signals for various material combinations and discuss optimal conditions to observe the effect. Including the backflow of spins is essential for distilling parameters such as the spin Hall angle from ISHE-detected spin pumping experiments.
A Comment on Phys. Rev. Lett. 111, 217204 (2013), Detection of Microwave Spin Pumping Using the Inverse Spin Hall Effect
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا