ترغب بنشر مسار تعليمي؟ اضغط هنا

Pair separation of magnetic elements in the quiet Sun

452   0   0.0 ( 0 )
 نشر من قبل Fabio Giannattasio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamic properties of the quiet Sun photosphere can be investigated by analyzing the pair dispersion of small-scale magnetic fields (i.e., magnetic elements). By using $25$ hr-long Hinode magnetograms at high spatial resolution ($0.3$), we tracked $68,490$ magnetic element pairs within a supergranular cell near the disk center. The computed pair separation spectrum, calculated on the whole set of particle pairs independently of their initial separation, points out what is known as a super-diffusive regime with spectral index $gamma=1.55pm0.05$, in agreement with the most recent literature, but extended to unprecedented spatial and temporal scales (from granular to supergranular). Furthermore, for the first time, we investigated here the spectrum of the mean square displacement of pairs of magnetic elements, depending on their initial separation $r_0$. We found that there is a typical initial distance above (below) which the pair separation is faster (slower) than the average. A possible physical interpretation of such a typical spatial scale is also provided.



قيم البحث

اقرأ أيضاً

Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convectiv e and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims. To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods. Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results. A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations ($sim2$ h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
This work reviews our understanding of the magnetic fields observed in the quiet Sun. The subject has undergone a major change during the last decade (quiet revolution), and it will remain changing since the techniques of diagnostic employed so far a re known to be severely biased. Keeping these caveats in mind, our work covers the main observational properties of the quiet Sun magnetic fields: magnetic field strengths, unsigned magnetic flux densities, magnetic field inclinations, as well as the temporal evolution on short time-scales (loop emergence), and long time-scales (solar cycle). We also summarize the main theoretical ideas put forward to explain the origin of the quiet Sun magnetism. A final prospective section points out various areas of solar physics where the quiet Sun magnetism may have an important physical role to play (chromospheric and coronal structure, solar wind acceleration, and solar elemental abundances).
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtain ed with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm^2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm^2 and 0.85 BPs/Mm^2, respectively.
We present high-precision spectro-polarimetric data with high spatial resolution (0.4$$) of the very quiet Sun at 1.56$mu$m obtained with the GREGOR telescope to shed some light on this complex magnetism. Half of our observed quiet-Sun region is bett er explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak ($sim$150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area $sim$50% are two-lobed Stokes $V$ profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا