ﻻ يوجد ملخص باللغة العربية
We derive from a class of microscopic asymmetric interacting particle systems on ${mathbb Z}$, with long range jump rates of order $|cdot|^{-(1+alpha)}$ for $0<alpha<2$, different continuum fractional SPDEs. More specifically, we show the equilibrium fluctuations of the hydrodynamics mass density field of zero-range processes, depending on the stucture of the asymmetry, and whether the field is translated with process characteristics velocity, is governed in various senses by types of fractional stochastic heat or Burgers equations. The main result: Suppose the jump rate is such that its symmetrization is long range but its (weak) asymmetry is nearest-neighbor. Then, when $alpha<3/2$, the fluctuation field in space-time scale $1/alpha:1$, translated with process characteristic velocity, irrespective of the strength of the asymmetry, converges to a fractional stochastic heat equation, the limit also for the symmetric process. However, when $alphageq 3/2$ and the strength of the weak asymmetry is tuned in scale $1-3/2alpha$, the associated limit points satisfy a martingale formulation of a fractional stochastic Burgers equation.
In this review we discuss the weak KPZ universality conjecture for a class of 1-d systems whose dynamics conserves one or more quantities. As a prototype example for the former case, we will focus on weakly asymmetric simple exclusion processes, for
A Freidlin-Wentzell type large deviation principle is established for stochastic partial differential equations with slow and fast time-scales, where the slow component is a one-dimensional stochastic Burgers equation with small noise and the fast co
The present work deals with the global solvability as well as asymptotic analysis of stochastic generalized Burgers-Huxley (SGBH) equation perturbed by space-time white noise in a bounded interval of $mathbb{R}$. We first prove the existence of uniqu
We establish a central limit theorem and prove a moderate deviation principle for inviscid stochastic Burgers equation. Due to the lack of viscous term, this is done in the framework of kinetic solution. The weak convergence method and doubling variables method play a key role.
We consider weakly asymmetric exclusion processes whose initial density profile is a small perturbation of a constant. We show that in the diffusive time-scale, in all dimensions, the density defect evolves as the solution of a viscous Burgers equation.