ﻻ يوجد ملخص باللغة العربية
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ($pi N$) TDAs from $bar{p}p to e^+e^- pi^0$ reaction with the future ={P}ANDA detector at the FAIR facility. At high center of mass energy and high invariant mass squared of the lepton pair $q^2$, the amplitude of the signal channel $bar{p}p to e^+e^- pi^0$ admits a QCD factorized description in terms of $pi N$ TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring $bar{p}p to e^+e^- pi^0$ with the ={P}ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. $bar{p}p to pi^+pi^- pi^0$ were performed for the center of mass energy squared $s = 5$ GeV$^2$ and $s = 10$ GeV$^2$, in the kinematic regions $3.0 < q^2 < 4.3$ GeV$^2$ and $5 < q^2 < 9$ GeV$^2$, respectively, with a neutral pion scattered in the forward or backward cone $| costheta_{pi^0}| > 0.5 $ in the proton-antiproton center of mass frame. Results of the simulation show that the particle identification capabilities of the ={P}ANDA detector will allow to achieve a background rejection factor of $5cdot 10^7$ ($1cdot 10^7$) at low (high) $q^2$ for $s=5$ GeV$^2$, and of $1cdot 10^8$ ($6cdot 10^6$) at low (high) $q^2$ for $s=10$ GeV$^2$, while keeping the signal reconstruction efficiency at around $40%$. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to $2$ fb$^{-1}$ of integrated luminosity. (.../...)
The opportunities which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and lead LHC beams extracted by a bent crystal are outlined. In particular, such an experiment can greatly complement facilities
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
Baryon-to-meson and baryon-to-photon transition distribution amplitudes (TDAs) arise in the collinear factorized description of a class of hard exclusive reactions characterized by the exchange of a non-zero baryon number in the cross channel. These
We argue that the concept of a multi-purpose fixed-target experiment with the proton or lead-ion LHC beams extracted by a bent crystal would offer a number of ground-breaking precision-physics opportunities. The multi-TeV LHC beams will allow for the
We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams