ترغب بنشر مسار تعليمي؟ اضغط هنا

Locating-Dominating sets in Hypergraphs

114   0   0.0 ( 0 )
 نشر من قبل Muhammad Salman
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A hypergraph is a generalization of a graph where edges can connect any number of vertices. In this paper, we extend the study of locating-dominating sets to hypergraphs. Along with some basic results, sharp bounds for the location-domination number of hypergraphs in general and exact values with specified conditions are investigated. Moreover, locating-dominating sets in some specific hypergraphs are found.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the problem of covering the vertices of a graph associated to a finite vector space as introduced by Das cite{Das}, such that we can uniquely identify any vertex by examining the vertices that cover it. We use locating-d ominating sets and identifying codes, which are closely related concepts for this purpose. These sets consist of a dominating set of graph such that every vertex is uniquely identified by its neighborhood within the dominating sets. We find the location-domination number and the identifying number of the graph and study the exchange property for locating-dominating sets and identifying codes.
141 - Adam Blumenthal 2019
In this paper, we study independent domination in directed graphs, which was recently introduced by Cary, Cary, and Prabhu. We provide a short, algorithmic proof that all directed acyclic graphs contain an independent dominating set. Using linear alg ebraic tools, we prove that any strongly connected graph with even period has at least two independent dominating sets, generalizing several of the results of Cary, Cary, and Prabhu. We prove that determining the period of the graph is not sufficient to determine the existence of an independent dominating set by constructing a few examples of infinite families of graphs. We show that the direct analogue of Vizings Conjecture does not hold for independent domination number in directed graphs by providing two infinite families of graphs. We initialize the study of time complexity for independent domination in directed graphs, proving that the existence of an independent dominating set in directed acyclic graphs and strongly connected graphs with even period are in the time complexity class $P$. We also provide an algorithm for determining existence of an independent dominating set for digraphs with period greater than $1$.
128 - Tom Bohman , Xizhi Liu , 2021
A $k$-uniform hypergraph with $n$ vertices is an $(n,k,ell)$-omitting system if it does not contain two edges whose intersection has size exactly $ell$. If in addition it does not contain two edges whose intersection has size greater than $ell$, then it is an $(n,k,ell)$-system. R{o}dl and v{S}iv{n}ajov{a} proved a lower bound for the independence number of $(n,k,ell)$-systems that is sharp in order of magnitude for fixed $2 le ell le k-1$. We consider the same question for the larger class of $(n,k,ell)$-omitting systems. For $kle 2ell+1$, we believe that the behavior is similar to the case of $(n,k,ell)$-systems and prove a nontrivial lower bound for the first open case $ell=k-2$. For $k>2ell+1$ we give new lower and upper bounds which show that the minimum independence number of $(n,k,ell)$-omitting systems has a very different behavior than for $(n,k,ell)$-systems. Our lower bound for $ell=k-2$ uses some adaptations of the random greedy independent set algorithm, and our upper bounds (constructions) for $k> 2ell+1$ are obtained from some pseudorandom graphs. We also prove some related results where we forbid more than two edges with a prescribed common intersection size and this leads to some applications in Ramsey theory. For example, we obtain good bounds for the Ramsey number $r_{k}(F^{k},t)$, where $F^{k}$ is the $k$-uniform Fan. Here the behavior is quite different than the case $k=2$ which reduces to the classical graph Ramsey number $r(3,t)$.
We study the dominating set reconfiguration problem with the token sliding rule. It consists, given a graph G=(V,E) and two dominating sets D_s and D_t of G, in determining if there exists a sequence S=<D_1:=D_s,...,D_l:=D_t> of dominating sets of G such that for any two consecutive dominating sets D_r and D_{r+1} with r<t, D_{r+1}=(D_r u) U v, where uv is an edge of G. In a recent paper, Bonamy et al studied this problem and raised the following questions: what is the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on circle graphs.
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs t order term for all (fixed) $rge 3$, with $d$ and $n$ going to infinity. In the case of strong independent sets, for $r=3$, we provide an upper bound that is tight up to the second-order term, improving on a result of Ordentlich-Roth (2004). The tightness in the strong independent set case is established by an explicit construction of a $3$-uniform, $d$-regular, cross-edge free, linear hypergraph on $n$ vertices which could be of interest in other contexts. We leave open the general case(s) with some conjectures. Our proofs use the occupancy method introduced by Davies, Jenssen, Perkins, and Roberts (2017).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا