ﻻ يوجد ملخص باللغة العربية
The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace $mathbb{CP}^{1|1} = mathrm{U}(2|1) / (mathrm{U}(1) times mathrm{U}(1|1))$, and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
In this note we report the results of our study of a 1D integrable spin chain whose critical behaviour is governed by a CFT possessing a continuous spectrum of scaling dimensions. It is argued that the computation of the density of Bethe states of th
Logarithmic representations of the conformal Galilean algebra (CGA) and the Exotic Conformal Galilean algebra ({sc ecga}) are constructed. This can be achieved by non-decomposable representations of the scaling dimensions or the rapidity indices, spe
A good understanding of conformal field theory (CFT) at c=0 is vital to the physics of disordered systems, as well as geometrical problems such as polymers and percolation. Steady progress has shown that these CFTs should be logarithmic, with indecom
In this paper we discuss the norms of the Bethe states for the spin one-half Heisenberg chain in the critical regime. Our analysis is based on the ODE/IQFT correspondence. Together with numerical work, this has lead us to formulate a set of conjectur
An extended field theory is presented that captures the full SL(2) x O(6,6+n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D=10 supergravity a