ﻻ يوجد ملخص باللغة العربية
It is proposed that the ground-state manifold of the neutral nitrogen-vacancy center in diamond could be used as a quantum two-level system in a solid-state-based implementation of a broadband, noise-free quantum optical memory. The proposal is based on the same-spin $Lambda$-type three-level system created between the two E orbital ground states and the A$_1$ orbital excited state of the center, and the cross-linear polarization selection rules obtained with the application of transverse electric field or uniaxial stress. Possible decay and decoherence mechanisms of this system are discussed, and it is shown that high-efficiency, noise-free storage of photons as short as a few tens of picoseconds for at least a few nanoseconds could be possible at low temperature.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processin
We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficienc
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a ran
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar
Sensing vector magnetic fields is critical to many applications in fundamental physics, bioimaging, and material science. Magnetic-field sensors exploiting nitrogen-vacancy (NV) centers are particularly compelling as they offer high sensitivity and s