ﻻ يوجد ملخص باللغة العربية
In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an entanglement memory element under two-pulse echo and under sequences of periodic, Carr-Purcell and Uhrig dynamical decoupling. The Carr-Purcell sequence is shown to outperform the other sequences in preserving entanglement against both random telegraph and $1/f$ noise. For typical $1/f$ flux-noise figures in superconducting nanocircuits, we show that entanglement and its nonlocal features can be efficiently stored up to times one order of magnitude longer than natural entanglement disappearance times employing pulse timings of current experimental reach.
Projective measurements are a powerful tool for manipulating quantum states. In particular, a set of qubits can be entangled by measurement of a joint property such as qubit parity. These joint measurements do not require a direct interaction between
Spin systems in solid state materials are promising qubit candidates for quantum information or quantum sensing. A major prerequisite here is the coherence of spin phase oscillations. In this work, we show a control sequence which, by applying RF pul
One of the major challenges in quantum computation has been to preserve the coherence of a quantum system against dephasing effects of the environment. The information stored in photon polarization, for example, is quickly lost due to such dephasing,
The implementation of polarization-based quantum communication is limited by signal loss and decoherence caused by the birefringence of a single-mode fiber. We investigate the Knill dynamical decoupling scheme, implemented using half-wave plates, to
We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient