ﻻ يوجد ملخص باللغة العربية
Stability, electroweak symmetry breaking, and the stationarity equations of the general three-Higgs-doublet model (3HDM) where all doublets carry the same hypercharge are discussed in detail. Employing the bilinear formalism the study of the 3HDM potential turns out to be straightforward. For the case that the potential leads to the physically relevant electroweak symmetry breaking we present explicit formulae for the masses of the physical Higgs bosons.
For potentials with n-Higgs-boson doublets stability, electroweak symmetry breaking, and the stationarity equations are discussed in detail. This is done within the bilinear formalism which simplifies the investigation, in particular since irrelevant
Motivated by the neutrino data, an extension of the Standard Model with three Higgs-boson doublets has been proposed. Imposing an O(2) x Z2 family symmetry, a neutrino mixing matrix with theta23 = pi/4 and theta13 = 0 appears in a natural way. Even t
We worked out in detail the three-Higgs-doublet extension of the standard model when the $A_4$ symmetry, which is imposed to solve the flavor problem, is extended to the scalar sector. The three doublets may be related to the fermion mass generation
We apply the unitarity bounds and the bounded-from-below (BFB) bounds to the most general scalar potential of the two-Higgs-doublet model (2HDM). We do this in the Higgs basis, i.e. in the basis for the scalar doublets where only one doublet has vacu
A model with three scalar doublets can be conveniently accommodated within an A4 symmetric framework. The A4 symmetry permits only a restricted form for the scalar potential. We show that for the global minima of this potential alignment follows as a