ترغب بنشر مسار تعليمي؟ اضغط هنا

The thickness of a weakly-magnetized accretion flow inside the last stable orbit of a Kerr black hole

139   0   0.0 ( 0 )
 نشر من قبل Pavel Abolmasov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Abolmasov




اسأل ChatGPT حول البحث

If accretion disc contains weak frozen-in entangled magnetic fields, their dynamical effect may be important inside the last stable orbit because of the decompression near the sonic point. Here, I consider the radial and vertical structure of a nearly free-falling flow inside the last stable orbit of a thin disc around a Kerr black hole. The thickness of such a flow is determined primarily by the vertical stress created by radial and azimuthal magnetic fields. The thickness is predicted to oscillate vertically around its equilibrium value determined by the magnetic field balance with gravity. For thin discs, this thickness is much larger than that of the accretion disc itself. Numerical simulations with HARM2d show the vertical structure is more complicated. In particular, magnetically supported disc seems to be unstable to segregation of matter into thinner streams with the vertical scale determined by thermal pressure or other processes.



قيم البحث

اقرأ أيضاً

We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability of a photon emitted from it decreases monotonically. The escape probability evaluated at the ISCO also decreases monotonically as the black hole spin increases. When the dimensionless Kerr parameter $a$ is at the Thorne limit $a=0.998$, the escape probability from the ISCO is $58.8%$. In the extremal case $a=1$, even if the orbital radius of the light source is arbitrarily close to the ISCO radius, which coincides with the horizon radius, the escape probability remains at $54.6%$. We also show that such photons that have escaped from the vicinity of the horizon reach infinity with sufficient energy to be potentially observed because Doppler blueshift due to relativistic beaming can overcome the gravitational redshift. Our findings indicate that signs of the near-horizon physics of a rapidly rotating black hole will be detectable on the edge of its shadow.
We report the detection of continuous positional and polarization changes of the compact source SgrA* in high states (flares) of its variable near- infrared emission with the near-infrared GRAVITY-Very Large Telescope Interferometer (VLTI) beam-combi ning instrument. In three prominent bright flares, the position centroids exhibit clockwise looped motion on the sky, on scales of typically 150 micro-arcseconds over a few tens of minutes, corresponding to about 30% the speed of light. At the same time, the flares exhibit continuous rotation of the polarization angle, with about the same 45(+/-15)-minute period as that of the centroid motions. Modelling with relativistic ray tracing shows that these findings are all consistent with a near face-on, circular orbit of a compact polarized hot spot of infrared synchrotron emission at approximately six to ten times the gravitational radius of a black hole of 4 million solar masses. This corresponds to the region just outside the innermost, stable, prograde circular orbit (ISCO) of a Schwarzschild-Kerr black hole, or near the retrograde ISCO of a highly spun-up Kerr hole. The polarization signature is consistent with orbital motion in a strong poloidal magnetic field.
The analysis of the thermal spectrum of geometrically thin and optically thick accretion disks of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximat e the disk as infinitesimally thin, while in reality the disk thickness is finite and increases as the black hole mass accretion rate increases. Here we present an XSPEC model to calculate the multi-temperature blackbody spectrum of a thin accretion disk of finite thickness around a Kerr black hole. We test our new model with an RXTE observation of the black hole binary GRS 1915+105. We find that the spin value inferred with the new model is slightly higher than the spin value obtained with a model with an infinitesimally thin disk, but the difference is small and the effect is currently subdominant with respect to other sources of uncertainties in the final spin measurement.
117 - Biplob Sarkar 2016
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete se t of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا