ﻻ يوجد ملخص باللغة العربية
If accretion disc contains weak frozen-in entangled magnetic fields, their dynamical effect may be important inside the last stable orbit because of the decompression near the sonic point. Here, I consider the radial and vertical structure of a nearly free-falling flow inside the last stable orbit of a thin disc around a Kerr black hole. The thickness of such a flow is determined primarily by the vertical stress created by radial and azimuthal magnetic fields. The thickness is predicted to oscillate vertically around its equilibrium value determined by the magnetic field balance with gravity. For thin discs, this thickness is much larger than that of the accretion disc itself. Numerical simulations with HARM2d show the vertical structure is more complicated. In particular, magnetically supported disc seems to be unstable to segregation of matter into thinner streams with the vertical scale determined by thermal pressure or other processes.
We consider the escape probability of a photon emitted from the innermost stable circular orbit (ISCO) of a rapidly rotating black hole. As an isotropically emitting light source on a circular orbit reduces its orbital radius, the escape probability
We report the detection of continuous positional and polarization changes of the compact source SgrA* in high states (flares) of its variable near- infrared emission with the near-infrared GRAVITY-Very Large Telescope Interferometer (VLTI) beam-combi
The analysis of the thermal spectrum of geometrically thin and optically thick accretion disks of black holes, the so-called continuum-fitting method, is one of the leading techniques for measuring black hole spins. Current models normally approximat
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete se