ﻻ يوجد ملخص باللغة العربية
We present a dynamically tunable mechanism of wave transmission in 1D helicoidal phononic crystals in a shape similar to DNA structures. These helicoidal architectures allow slanted nonlinear contact among cylin- drical constituents, and the relative torsional movements can dynamically tune the contact stiffness between neighboring cylinders. This results in cross-talking between in-plane torsional and out-of-plane longitudinal waves. We numerically demonstrate their versatile wave mixing and controllable dispersion behavior in both wavenumber and frequency domains. Based on this principle, a suggestion towards an acoustic configuration bearing parallels to a transistor is further proposed, in which longitudinal waves can be switched on/off through torsional waves.
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels -- primary and control ones -- via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the p
It is well known that an interface created by two topologically distinct structures could host nontrivial edge states that are immune to defects. In this letter, we introduce a one-dimensional space-time phononic crystal and study the associated anom
We investigate the dynamical properties of a strongly disordered micropolar lattice made up of cubic block units. This phononic lattice model supports both transverse and rotational degrees of freedom hence its disordered variant posses an interestin
We present a theoretical study of extreme events occurring in phononic lattices. In particular, we focus on the formation of rogue or freak waves, which are characterized by their localization in both spatial and temporal domains. We consider two exa
The compelling original idea of a time crystal has referred to a structure that repeats in time as well as in space, an idea that has attracted significant interest recently. While obstructions to realize such structures became apparent early on, foc