ﻻ يوجد ملخص باللغة العربية
This part II of the paper is concerned with questions of existence and uniqueness of tangents in the special case of G-plurisubharmonic functions, where G is a compact subset of the Grassmannian of p-planes in ${mathbb R}^n$. An upper semi-continuous function u on an open set $Omega$ in ${mathbb R}^n$ is G-plurisubharmonic if its restriction to $Omegacap W$ is subharmonic for every affine G-plane $W$. Here G is assumed to be invariant under a subgroup K of O(n) which acts transitively on the sphere $S^{n-1}$. Tangents to u at a point x are the cluster points of u under a natural flow (or blow-up) at x. They always exist and are G-harmonic at all points of continuity. A homogeneity property is established for all tangents in these geometric cases. This leads to principal results concerning the Strong Uniqueness of Tangents, which means that all tangents are unique and of the form $Theta K_p$ where $K_p$ is the Riesz kernel and $Theta$ is the density of u at the point. Strong uniqueness is a form of regularity which implies that the sets ${Theta(u,x)geq c}$ for $c>0$ are discrete. When the invariance group K= O(n), U(n) or Sp(n), strong uniqueness holds for all but a small handful of cases. It also holds for essentially all interesting G which arise in calibrated geometry. When strong uniqueness fails, homogeneity implies that tangents are characterized by a subequation on the sphere, which is worked out in detail. In the cases corresponding to the real, complex and quaternionic Monge-Amp`ere equations (convex functions, and complex and quaternionic plurisubharmonic functions) tangents, which are far from unique, are then systematically studied and classified.
There is an interesting potential theory associated to each degenerate elliptic, fully nonlinear equation $f(D^2u) = 0$. These include all the potential theories attached to calibrated geometries. This paper begins the study of tangents to the subsol
This work focuses on dynamics arising from reaction-diffusion equations , where the profile of propagation is no longer characterized by a single front, but by a layer of several fronts which we call a propagating terrace. This means, intuitively, th
The dual $L_p$-Minkowski problem with $p<0<q$ is investigated in this paper. By proving a new existence result of solutions and constructing an example, we obtain the non-uniqueness of solutions to this problem.
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation.
It is shown that every knot or link is the set of complex tangents of a 3-sphere smoothly embedded in the three-dimensional complex space. We show in fact that a one-dimensional submanifold of a closed orientable 3-manifold can be realised as the set