ترغب بنشر مسار تعليمي؟ اضغط هنا

CLASS: The Cosmology Large Angular Scale Surveyor

180   0   0.0 ( 0 )
 نشر من قبل Thomas Essinger-Hileman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, $tau$.



قيم البحث

اقرأ أيضاً

The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave ba ckground (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, $r$, down to a level of 0.01 (95% C.L.).
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical desi gn of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19deg x 14deg with a resolution for each beam on the sky of 1.5deg FWHM.
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of polarization-sensitive millimeter wave telescopes that observes ~70% of the sky at frequency bands centered near 40GHz, 90GHz, 150GHz, and 220GHz from the Atacama desert of northern Ch ile. Here, we describe the architecture of the software used to control the telescopes, acquire data from the various instruments, schedule observations, monitor the status of the instruments and observations, create archival data packages, and transfer data packages to North America for analysis. The computer and network architecture of the CLASS observing site is also briefly discussed. This software and architecture has been in use since 2016, operating the telescopes day and night throughout the year, and has proven successful in fulfilling its design goals.
The Cosmology Large Angular Scale Surveyor consists of four instruments performing a CMB polarization survey. Currently, the 40 GHz and first 90 GHz instruments are deployed and observing, with the second 90 GHz and a multichroic 150/220 GHz instrume nt to follow. The receiver is a central component of each instruments design and functionality. This paper describes the CLASS receiver design, using the first 90 GHz receiver as a primary reference. Cryogenic cooling and filters maintain a cold, low-noise environment for the detectors. We have achieved receiver detector temperatures below 50 mK in the 40 GHz instrument for 85% of the initial 1.5 years of operation, and observed in-band efficiency that is consistent with pre-deployment estimates. At 90 GHz, less than 26% of in-band power is lost to the filters and lenses in the receiver, allowing for high optical efficiency. We discuss the mounting scheme for the filters and lenses, the alignment of the cold optics and detectors, stray light control, and magnetic shielding.
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا