ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?

128   0   0.0 ( 0 )
 نشر من قبل Niall MacCrann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the level of agreement between low redshift weak lensing data and the CMB using measurements from the CFHTLenS and Planck+WMAP polarization. We perform an independent analysis of the CFHTLenS six bin tomography results of Heymans et al. (2013). We extend their systematics treatment and find the cosmological constraints to be relatively robust to the choice of non-linear modeling, extension to the intrinsic alignment model and inclusion of baryons. We find that the 90% confidence contours of CFHTLenS and Planck+WP do not overlap even in the full 6-dimensional parameter space of $Lambda$CDM, so the two datasets are discrepant. Allowing a massive active neutrino or tensor modes does not significantly resolve the disagreement in the full n-dimensional parameter space. Our results differ from some in the literature because we use the full tomographic information in the weak lensing data and marginalize over systematics. We note that adding a sterile neutrino to $Lambda$CDM does bring the 8-dimensional 64% contours to overlap, mainly due to the extra effective number of neutrino species, which we find to be 0.84 $pm$ 0.35 (68%) greater than standard on combining the datasets. We discuss why this is not a completely satisfactory resolution, leaving open the possibility of other new physics or observational systematics as contributing factors. We provide updated cosmology fitting functions for the CFHTLenS constraints and discuss the differences from ones used in the literature.



قيم البحث

اقرأ أيضاً

We examine the internal consistency of the Planck 2015 cosmic microwave background (CMB) temperature anisotropy power spectrum. We show that tension exists between cosmological constant cold dark matter (LCDM) model parameters inferred from multipole s l<1000 (roughly those accessible to Wilkinson Microwave Anisotropy Probe), and from l>=1000, particularly the CDM density, Omega_ch^2, which is discrepant at 2.5 sigma for a Planck-motivated prior on the optical depth, tau=0.07+/-0.02. We find some parameter tensions to be larger than previously reported because of inaccuracy in the code used by the Planck Collaboration to generate model spectra. The Planck l>=1000 constraints are also in tension with low-redshift data sets, including Plancks own measurement of the CMB lensing power spectrum (2.4 sigma), and the most precise baryon acoustic oscillation (BAO) scale determination (2.5 sigma). The Hubble constant predicted by Planck from l>=1000, H_0=64.1+/-1.7 km/s/Mpc, disagrees with the most precise local distance ladder measurement of 73.0+/-2.4 km/s/Mpc at the 3.0 sigma level, while the Planck value from l<1000, 69.7+/-1.7 km/s/Mpc, is consistent within 1 sigma. A discrepancy between the Planck and South Pole Telescope (SPT) high-multipole CMB spectra disfavors interpreting these tensions as evidence for new physics. We conclude that the parameters from the Planck high-multipole spectrum probably differ from the underlying values due to either an unlikely statistical fluctuation or unaccounted-for systematics persisting in the Planck data.
We study the effect of weak lensing by cosmic (super-)strings on the anisotropies of cosmic microwave background (CMB). In developing a method to calculate the lensing convergence field due to strings, and thereby temperature and polarization angular power spectra of CMB, we clarify how the nature of strings, characterized by the intercommuting probability, can influence these CMB anisotropies. Assuming that the power spectrum is dominated by Poisson-distributed string segments, we find that the convergence spectrum peaks at low multipoles and is mostly contributed from strings located at relatively low redshifts. As the intercommuting probability decreases, the spectra of the convergence and hence the lensed temperature and polarizations are gained because the number density of string segments becomes larger. An observationally important feature of the string-induced CMB polarizations is that the string-lensed spectra decay more slowly on small scales compared with primordial scalar perturbations from standard inflation.
The possibly unbiased selection process in surveys of the Sunyaev Zeldovich effect can unveil new populations of galaxy clusters. We performed a weak lensing analysis of the PSZ2LenS sample, i.e. the PSZ2 galaxy clusters detected by the Planck missio n in the sky portion covered by the lensing surveys CFHTLenS and RCSLenS. PSZ2LenS consists of 35 clusters and it is a statistically complete and homogeneous subsample of the PSZ2 catalogue. The Planck selected clusters appear to be unbiased tracers of the massive end of the cosmological haloes. The mass concentration relation of the sample is in excellent agreement with predictions from the Lambda cold dark matter model. The stacked lensing signal is detected at 14 sigma significance over the radial range 0.1<R<3.2 Mpc/h, and is well described by the cuspy dark halo models predicted by numerical simulations. We confirmed that Planck estimated masses are biased low by b_SZ= 27+-11(stat)+-8(sys) per cent with respect to weak lensing masses. The bias is higher for the cosmological subsample, b_SZ= 40+-14+-(stat)+-8(sys) per cent.
The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-colour (u*griz) photometry spanning 154 square degrees, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distrib ution function summed over galaxies provides an accurate representation of the galaxy redshift distribution accounting for random and catastrophic errors for galaxies with best fitting photometric redshifts z_p < 1.3. We present cosmological constraints using tomographic weak gravitational lensing by large-scale structure. We use two broad redshift bins 0.5 < z_p <= 0.85 and 0.85 < z_p <= 1.3 free of intrinsic alignment contamination, and measure the shear correlation function on angular scales in the range ~1-40 arcmin. We show that the problematic redshift scaling of the shear signal, found in previous CFHTLS data analyses, does not afflict the CFHTLenS data. For a flat Lambda-CDM model and a fixed matter density Omega_m=0.27, we find the normalisation of the matter power spectrum sigma_8=0.771 pm 0.041. When combined with cosmic microwave background data (WMAP7), baryon acoustic oscillation data (BOSS), and a prior on the Hubble constant from the HST distance ladder, we find that CFHTLenS improves the precision of the fully marginalised parameter estimates by an average factor of 1.5-2. Combining our results with the above cosmological probes, we find Omega_m=0.2762 pm 0.0074 and sigma_8=0.802 pm 0.013.
104 - Y. Omori , E. Baxter , C. Chang 2018
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one (Y1) data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg$^{2}$. With the combined measurements from four source galaxy redshift bins, we reject the hypothesis of no lensing with a significance of $10.8sigma$. When employing angular scale cuts, this significance is reduced to $6.8sigma$, which remains the highest signal-to-noise measurement of its kind to date. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial $Lambda$CDM model, finding $A = 0.99 pm 0.17$. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the $Lambda$CDM model, we obtain the marginalized constraints of $Omega_{rm m}=0.261^{+0.070}_{-0.051}$ and $S_{8}equiv sigma_{8}sqrt{Omega_{rm m}/0.3} = 0.660^{+0.085}_{-0.100}$. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT and Planck data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا