ﻻ يوجد ملخص باللغة العربية
The measurement of the radio emission from extensive air showers, induced by high-energy cosmic rays is one of the key science projects of the LOFAR radio telescope. The LOfar Radboud air shower Array (LORA) has been installed in the core of LOFAR in the Netherlands. The main purpose of LORA is to measure the properties of air showers and to trigger the read-out of the LOFAR radio antennas to register extensive air showers. The experimental set-up of the array of scintillation detectors and its performance are described.
We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly $99%$, and that the angle between the polarization direction of the electric
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^c
Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Statio
Extensive Air Showers (EAS) arrival direction distribution is studied by means of a 4-detector installation in Telavi (TEL array), which is a node of GELATICA net in Georgia. The description of EAS arrival zenith angle distribution within the spheric
Extensive air showers, induced by high energy cosmic rays impinging on the Earths atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavef