ترغب بنشر مسار تعليمي؟ اضغط هنا

The Solar Twin Planet Search. I. Fundamental parameters of the stellar sample

126   0   0.0 ( 0 )
 نشر من قبل Ivan Ramirez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are carrying out a search for planets around a sample of solar twin stars using the HARPS spectrograph. The goal of this project is to exploit the advantage offered by solar twins to obtain chemical abundances of unmatched precision. This survey will enable new studies of the stellar composition -- planet connection. Here we used the MIKE spectrograph on the Magellan Clay Telescope to acquire high resolution, high signal-to-noise ratio spectra of our sample stars. We measured the equivalent widths of iron lines and used strict differential excitation/ionization balance analysis to determine atmospheric parameters of unprecedented internal precision (DTeff=7K, Dlogg=0.019, D[Fe/H]=0.006dex, Dvt=0.016km/s). Reliable relative ages and highly precise masses were then estimated using theoretical isochrones. The spectroscopic parameters we derived are in good agreement with those measured using other independent techniques. The root-mean-square scatter of the differences seen is fully compatible with the observational errors, demonstrating, as assumed thus far, that systematic uncertainties in the stellar parameters are negligible in the study of solar twins. We find a tight activity-age relation for our sample stars, which validates the internal precision of our dating method. Furthermore, we find that the solar cycle is perfectly consistent both with this trend and its star-to-star scatter. We present the largest sample of solar twins analyzed homogeneously using high quality spectra. The fundamental parameters derived from this work will be employed in subsequent work that aims to explore the connections between planet formation and stellar chemical composition.



قيم البحث

اقرأ أيضاً

Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activ ity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.
Stellar metallicity strongly correlates with the presence of planets and their properties. To check for new correlations between stars and the existence of an orbiting planet, we determine precise stellar parameters for a sample of metal-poor solar-t ype stars. This sample was observed with the HARPS spectrograph and is part of a program to search for new extrasolar planets. The stellar parameters were determined using an LTE analysis based on equivalent widths (EW) of iron lines and by imposing excitation and ionization equilibrium. The ARES code was used to allow automatic and systematic derivation of the stellar parameters. Precise stellar parameters and metallicities were obtained for 97 low metal-content stars. We also present the derived masses, luminosities, and new parallaxes estimations based on the derived parameters, and compare our spectroscopic parameters with an infra-red flux method calibration to check the consistency of our method in metal poor stars. Both methods seems to give the same effective temperature scale. Finally we present a new calibration for the temperature as a function of textit{B-V} and [Fe/H]. This was obtained by adding these new metal poor stars in order to increase the range in metallicity for the calibration. The standard deviation of this new calibration is $sim$ 50 K.
Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understandin g of the basic properties of their host stars. We have determined the basic stellar properties of F, K, and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from echelle spectra taken at the Apache Point Observatorys 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and TGVIT to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity, and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighborhood. Additionally, we find the ages of most of our sample are $< 500 Myrs$, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected co-moving companions with the properties of their host stars.
Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmarks is currently limited. We aim to construct a new set of metal-poor benchmar ks, based on reliable interferometric effective temperature ($T_text{eff}$) determinations and a homogeneous analysis with a desired precision of $1%$ in $T_text{eff}$. We observed ten late-type metal-poor dwarf and giants: HD2665, HD6755, HD6833, HD103095, HD122563, HD127243, HD140283, HD175305, HD221170, and HD224930. Only three of the ten stars (HD103095, HD122563, and HD140283) have previously been used as benchmarks. For the observations, we used the high angular resolution optical interferometric instrument PAVO at the CHARA array. We modelled angular diameters using 3D limb darkening models and determined $T_text{eff}$ directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities ($log(g)$) were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE and FIES spectrographs and estimated metallicities ($mathrm{[Fe/H]}$) from a 1D non-LTE abundance analysis of unblended lines of neutral and singly ionized iron. We inferred $T_text{eff}$ to better than $1%$ for five of the stars (HD103095, HD122563, HD127243, HD140283, and HD224930). The $T_text{eff}$ of the other five stars are reliable to between $2-3%$; the higher uncertainty on the $T_text{eff}$ for those stars is mainly due to their having a larger uncertainty in the bolometric fluxes. We also determined $log(g)$ and $mathrm{[Fe/H]}$ with median uncertainties of $0.03,mathrm{dex}$ and $0.09,mathrm{dex}$, respectively. These ten stars can, therefore, be adopted as a new, reliable set of metal-poor benchmarks.
142 - K. von Braun 2011
The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. We use the CHARA Array to directly determine the following of 55 Cncs stellar astrophysical parameters: $R=0.943 pm 0.010 R_{odot}$, $T_{rm EFF} = 5196 pm 24 $ K. Planet 55 Cnc f ($M sin i = 0.155 M_{Jupiter}$) spends the majority of the duration of its elliptical orbit in the circumstellar habitable zone (0.67--1.32 AU) where, with moderate greenhouse heating, it could harbor liquid water. Our determination of 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e ($simeq 2.1 R_{earth}$), which, depending on the assumed literature value of planetary mass, implies a bulk density of 0.76 $rho_{earth}$ or 1.07 $rho_{earth}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا