ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and metal-insulator transitions in coupled spin-fermion systems

303   0   0.0 ( 0 )
 نشر من قبل Rubem Mondaini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant $J$ interact with the electronic spins of several adjoining metallic sheets via a coupling $J_H$. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic ($J>0$) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case ($J<0$) the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on $J_H$. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.



قيم البحث

اقرأ أيضاً

This article reviews recent results of magnetotransport and magnetization measurements performed on highly oriented pyrolitic graphite (HOPG) and single crystalline Kish graphite samples. Both metal-insulator and insulator-metal transitions driven by magnetic field applied perpendicular to the basal planes of graphite were found and discussed in the light of relevant theories. The results provide evidence for the existence of localized superconducting domains in HOPG even at room temperature, as well as an interplay between superconducting and ferromagnetic correlations. We also present experimental evidence for the superconductivity occurrence in graphite-sulfur composites.
We consider how electron-phonon interaction influences the insulator-metal transitions driven by doping in the strongly correlated system. Using the polaronic version of the generalized tight-binding method, we investigate a multiband two-dimensional model taking into account both Holstein and Su-Schrieffer-Heeger types of electron-lattice contributions. For adiabatic ratio of the hopping parameter and the phonon field energy, different types of band structure evolution are observed in a wide electron-phonon parameter range. We demonstrate the relationship between transition features and such properties of the system as the polaron and bipolaron crossovers, pseudogap behavior of various origin, orbital selectivity, and the redistribution of the spectral weight due to the electron-phonon interaction.
134 - P. Schutz , D. Di Sante , L. Dudy 2017
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit coupled SrIrO$_3$ ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various l evels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced re-adjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr$_2$IrO$_4$ opens new avenues to unconventional superconductivity by clean electron doping through electric field gating.
373 - J. Bobroff , G. Lang , H. Alloul 2005
Co and Na NMR are used to probe the local susceptibility and charge state of the two Co sites of the Na-ordered orthorhombic Na0.5CoO2. Above T_N=86K, both sites display a similar T-dependence of the spin shift, suggesting that there is no charge seg regation into Co3+ and Co4+ sites. Below T_N, the magnetic long range commensurate order found is only slightly affected by the metal-insulator transition (MIT) at T_MIT=51K. Furthermore, the electric field gradient at the Co site does not change at these transitions, indicating the absence of charge ordering. All these observations can be explained by successive SDW induced by two nestings of the Fermi Surface specific to the x=0.5 Na-ordering.
A key problem in the field of quantum criticality is to understand the nature of quantum phase transitions in systems of interacting itinerant fermions, motivated by experiments on a variety of strongly correlated materials. Much attention has been p aid in recent years to two-dimensional (2D) materials in which itinerant fermions acquire a pseudo-relativistic Dirac dispersion, such as graphene, topological insulator surfaces, and certain spin liquids. This article reviews the phenomenology and theoretical description of quantum phase transitions in systems of 2D Dirac fermions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا