ترغب بنشر مسار تعليمي؟ اضغط هنا

Certifying solutions to overdetermined and singular polynomial systems over Q

117   0   0.0 ( 0 )
 نشر من قبل Agnes Szanto
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with certifying that a given point is near an exact root of an overdetermined or singular polynomial system with rational coefficients. The difficulty lies in the fact that consistency of overdetermined systems is not a continuous property. Our certification is based on hybrid symbolic-numeric methods to compute the exact rational univariate representation (RUR) of a component of the input system from approximate roots. For overdetermined polynomial systems with simple roots, we compute an initial RUR from approximate roots. The accuracy of the RUR is increased via Newton iterations until the exact RUR is found, which we certify using exact arithmetic. Since the RUR is well-constrained, we can use it to certify the given approximate roots using alpha-theory. To certify isolated singular roots, we use a determinantal form of the isosingular deflation, which adds new polynomials to the original system without introducing new variables. The resulting polynomial system is overdetermined, but the roots are now simple, thereby reducing the problem to the overdetermined case. We prove that our algorithms have complexity that are polynomial in the input plus the output size upon successful convergence, and we use worst case upper bounds for termination when our iteration does not converge to an exact RUR. Examples are included to demonstrate the approach.



قيم البحث

اقرأ أيضاً

131 - James Saunderson 2019
We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families of nonnegative polynomials (which we call hyperbolic certificates of nonnegativity) from any hyperbolic polynomial. We investigate the pairs $(n,d)$ for which there is a hyperbolic polynomial of degree $d$ in $n$ variables such that an associated hyperbolic certificate of nonnegativity is not a sum of squares. If $dgeq 4$ we show that this occurs whenever $ngeq 4$. In the degree three case, we find an explicit hyperbolic cubic in $43$ variables that gives hyperbolic certificates that are not sums of squares. As a corollary, we obtain the first known hyperbolic cubic no power of which has a definite determinantal representation. Our approach also allows us to show that, given a cubic $p$, and a direction $e$, the decision problem Is $p$ hyperbolic with respect to $e$? is co-NP hard.
In this paper we report on an application of computer algebra in which mathematical puzzles are generated of a type that had been widely used in mathematics contests by a large number of participants worldwide. The algorithmic aspect of our work pr ovides a method to compute rational solutions of single polynomial equations that are typically large with $10^2 ldots 10^5$ terms and that are heavily underdetermined. This functionality was obtained by adding modules for a new type of splitting of equations to the existing package CRACK that is normally used to solve polynomial algebraic and differential systems.
85 - Colin Faverjon 2021
This paper is devoted to the study of the analytic properties of Mahler systems at 0. We give an effective characterisation of Mahler systems that are regular singular at 0, that is, systems which are equivalent to constant ones. Similar characterisa tions already exist for differential and (q-)difference systems but they do not apply in the Mahler case. This work fill in the gap by giving an algorithm which decides whether or not a Mahler system is regular singular at 0.
314 - Nan Li , Lihong Zhi 2012
In this paper, we generalize the algorithm described by Rump and Graillat, as well as our previous work on certifying breadth-one singular solutions of polynomial systems, to compute verified and narrow error bounds such that a slightly perturbed sys tem is guaranteed to possess an isolated singular solution within the computed bounds. Our new verification method is based on deflation techniques using smoothing parameters. We demonstrate the performance of the algorithm for systems with singular solutions of multiplicity up to hundreds.
Quantifier elimination over the reals is a central problem in computational real algebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on some variables, it consists in computing a logically equivalent formula involving only unquantified variables. When there is no alternation of quantifiers, one has a one block quantifier elimination problem. This paper studies a variant of the one block quantifier elimination in which we compute an almost equivalent formula of the input. We design a new probabilistic efficient algorithm for solving this variant when the input is a system of polynomial equations satisfying some regularity assumptions. When the input is generic, involves $s$ polynomials of degree bounded by $D$ with $n$ quantified variables and $t$ unquantified ones, we prove that this algorithm outputs semi-algebraic formulas of degree bounded by $mathcal{D}$ using $O {widetilde{~}}left ((n-s+1) 8^{t} mathcal{D}^{3t+2} binom{t+mathcal{D}}{t} right )$ arithmetic operations in the ground field where $mathcal{D} = 2(n+s) D^s(D-1)^{n-s+1} binom{n}{s}$. In practice, it allows us to solve quantifier elimination problems which are out of reach of the state-of-the-art (up to $8$ variables).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا