ﻻ يوجد ملخص باللغة العربية
This paper is concerned with certifying that a given point is near an exact root of an overdetermined or singular polynomial system with rational coefficients. The difficulty lies in the fact that consistency of overdetermined systems is not a continuous property. Our certification is based on hybrid symbolic-numeric methods to compute the exact rational univariate representation (RUR) of a component of the input system from approximate roots. For overdetermined polynomial systems with simple roots, we compute an initial RUR from approximate roots. The accuracy of the RUR is increased via Newton iterations until the exact RUR is found, which we certify using exact arithmetic. Since the RUR is well-constrained, we can use it to certify the given approximate roots using alpha-theory. To certify isolated singular roots, we use a determinantal form of the isosingular deflation, which adds new polynomials to the original system without introducing new variables. The resulting polynomial system is overdetermined, but the roots are now simple, thereby reducing the problem to the overdetermined case. We prove that our algorithms have complexity that are polynomial in the input plus the output size upon successful convergence, and we use worst case upper bounds for termination when our iteration does not converge to an exact RUR. Examples are included to demonstrate the approach.
We describe a new approach to certifying the global nonnegativity of multivariate polynomials by solving hyperbolic optimization problems---a class of convex optimization problems that generalize semidefinite programs. We show how to produce families
In this paper we report on an application of computer algebra in which mathematical puzzles are generated of a type that had been widely used in mathematics contests by a large number of participants worldwide. The algorithmic aspect of our work pr
This paper is devoted to the study of the analytic properties of Mahler systems at 0. We give an effective characterisation of Mahler systems that are regular singular at 0, that is, systems which are equivalent to constant ones. Similar characterisa
In this paper, we generalize the algorithm described by Rump and Graillat, as well as our previous work on certifying breadth-one singular solutions of polynomial systems, to compute verified and narrow error bounds such that a slightly perturbed sys
Quantifier elimination over the reals is a central problem in computational real algebraic geometry, polynomial system solving and symbolic computation. Given a semi-algebraic formula (whose atoms are polynomial constraints) with quantifiers on some