ﻻ يوجد ملخص باللغة العربية
The Gratzer-Schmidt theorem of lattice theory states that each algebraic lattice is isomorphic to the congruence lattice of an algebra. We study the reverse mathematics of this theorem. We also show that the set of indices of computable lattices that are complete is $Pi^1_1$-complete; the set of indices of computable lattices that are algebraic is $Pi^1_1$-complete; the set of compact elements of a computable lattice is $Pi^{1}_{1}$ and can be $Pi^1_1$-complete; and the set of compact elements of a distributive computable lattice is $Pi^{0}_{3}$, and there is an algebraic distributive computable lattice such that the set of its compact elements is $Pi^0_3$-complete.
We analyze the strength of Hellys selection theorem HST, which is the most important compactness theorem on the space of functions of bounded variation. For this we utilize a new representation of this space intermediate between $L_1$ and the Sobolev
In this paper, we show that $mathrm{RT}^{2}+mathsf{WKL}_0$ is a $Pi^{1}_{1}$-conservative extension of $mathrm{B}Sigma^0_3$.
We study the reverse mathematics and computability-the-o-re-tic strength of (stable) Ramseys Theorem for pairs and the related principles COH and DNR. We show that SRT$^2_2$ implies DNR over RCA$_0$ but COH does not, and answer a question of Mileti b
We undertake the study of size-change analysis in the context of Reverse Mathematics. In particular, we prove that the SCT criterion is equivalent to $Sigma^0_2$-induction over RCA$_0$.
In this paper we continue the study, from Frittaion, Steila and Yokoyama (2017), on size-change termination in the context of Reverse Mathematics. We analyze the soundness of the SCT method. In particular, we prove that the statement any program whic