ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

154   0   0.0 ( 0 )
 نشر من قبل Thomas Caldwell Jr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.



قيم البحث

اقرأ أيضاً

We performed a time-resolved spectroscopic study of the VUV/UV argon scintillation as a function of pressure and electric field, by means of a wavelength sensitive detector operated with different radioactive sources. Our work conveys new evidence of distinctive features of the argon light which are in contrast with the general assumption that, for particle detection purposes, the scintillation can be considered to be largely monochromatic at 128 nm (second continuum). The wavelength and the time-resolved analysis of the photon emission reveal that the dominant component of the argon scintillation during first tens of ns is in the range [160, 325] nm. This light is consistent with the third continuum emission from highly charged argon ions/molecules. This component of the scintillation is field-independent up to 25 V/cm/bar and shows a very mild dependence with pressure in the range [1,16] bar. The dynamics of the second continuum emission is dominated by the excimer formation time, whose variation as a function of the pressure has been measured. Additionally, the time and pressure-dependent features of electron-ion recombination, in the second continuum band, have been measured. This study opens new paths toward a novel particle identification technique based on the spectral information of the noble-elements scintillation light.
Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently tho ught of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that might benefit from wireless techniques. The objective is to provide a common platform for research and development in order to optimize effectiveness and cost, with the aim of designing and testing wireless demonstrators for large instrumentation systems.
94 - Peter Krizan 2007
The paper reviews recent progress in particle identification methods. A survey of motivations and requirements for particle identification in various experimental environments is followed by the main emphasis, which is on the recent development of Ch erenkov counters, from upgrades of existing devices to a novel focusing radiator concept and new photon detectors. The impact of including a precise measurement of the time of arrival of Cherenkov photons to increase the kinematical region over which particle identification can be performed is discussed. The progress in dedicated time-of-flight counters with recently developed very fast single photon detectors is also evaluated.
Superfluid $^4$He is a promising target material for direct detection of light ($<$ 1 GeV) dark matter. Possible signal channels available for readout in this medium include prompt photons, triplet excimers, and roton and phonon quasiparticles. The r elative yield of these signals has implications for the sensitivity and discrimination power of a superfluid $^4$He dark matter detector. Using a 16 cm$^3$ volume of 1.75 K superfluid $^4$He read out by six immersed photomultiplier tubes, we measured the scintillation from electronic recoils ranging between 36.3 and 185 keV$_mathrm{ee}$, yielding a mean signal size of $1.12^{+0.02}_{-0.03}$ phe/keV$_mathrm{ee}$, and nuclear recoils from 53.2 to 1090 keV$_mathrm{nr}$. We compare the results of our relative scintillation yield measurements to an existing semi-empirical model based on helium-helium and electron-helium interaction cross sections. We also study the behavior of delayed scintillation components as a function of recoil type and energy, a further avenue for signal discrimination in superfluid $^4$He.
High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose , we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا