ترغب بنشر مسار تعليمي؟ اضغط هنا

Truthful Prioritization Schemes for Spectrum Sharing

154   0   0.0 ( 0 )
 نشر من قبل VIkas Kawadia
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We design a protocol for dynamic prioritization of data on shared routers such as untethered 3G/4G devices. The mechanism prioritizes bandwidth in favor of users with the highest value, and is incentive compatible, so that users can simply report their true values for network access. A revenue pooling mechanism also aligns incentives for sellers, so that they will choose to use prioritization methods that retain the incentive properties on the buy-side. In this way, the design allows for an open architecture. In addition to revenue pooling, the technical contribution is to identify a class of stochastic demand models and a prioritization scheme that provides allocation monotonicity. Simulation results confirm efficiency gains from dynamic prioritization relative to prior methods, as well as the effectiveness of revenue pooling.



قيم البحث

اقرأ أيضاً

132 - Pan Zhou , Wenqi Wei , Kaigui Bian 2016
Thanks to the rapid development of information technology, the size of the wireless network becomes larger and larger, which makes spectrum resources more precious than ever before. To improve the efficiency of spectrum utilization, game theory has b een applied to study the spectrum sharing in wireless networks for a long time. However, the scale of wireless network in existing studies is relatively small. In this paper, we introduce a novel game and model the spectrum sharing problem as an aggregative game for large-scale, heterogeneous, and dynamic networks. The massive usage of spectrum also leads to easier privacy divulgence of spectrum users actions, which calls for privacy and truthfulness guarantees in wireless network. In a large decentralized scenario, each user has no priori about other users decisions, which forms an incomplete information game. A weak mediator, e.g., the base station or licensed spectrum regulator, is introduced and turns this game into a complete one, which is essential to reach a Nash equilibrium (NE). By utilizing past experience on the channel access, we propose an online learning algorithm to improve the utility of each user, achieving NE over time. Our learning algorithm also provides no regret guarantee to each user. Our mechanism admits an approximate ex-post NE. We also prove that it satisfies the joint differential privacy and is incentive-compatible. Efficiency of the approximate NE is evaluated, and the innovative scaling law results are disclosed. Finally, we provide simulation results to verify our analysis.
The problem of scheduling unrelated machines by a truthful mechanism to minimize the makespan was introduced in the seminal Algorithmic Mechanism Design paper by Nisan and Ronen. Nisan and Ronen showed that there is a truthful mechanism that provides an approximation ratio of $min(m,n)$, where $n$ is the number of machines and $m$ is the number of jobs. They also proved that no truthful mechanism can provide an approximation ratio better than $2$. Since then, the lower bound was improved to $1 +sqrt 2 approx 2.41$ by Christodoulou, Kotsoupias, and Vidali, and then to $1+phiapprox 2.618$ by Kotsoupias and Vidali. Very recently, the lower bound was improved to $2.755$ by Giannakopoulos, Hammerl, and Pocas. In this paper we further improve the bound to $3-delta$, for every constant $delta>0$. Note that a gap between the upper bound and the lower bounds exists even when the number of machines and jobs is very small. In particular, the known $1+sqrt{2}$ lower bound requires at least $3$ machines and $5$ jobs. In contrast, we show a lower bound of $2.2055$ that uses only $3$ machines and $3$ jobs and a lower bound of $1+sqrt 2$ that uses only $3$ machines and $4$ jobs. For the case of two machines and two jobs we show a lower bound of $2$. Similar bounds for two machines and two jobs were known before but only via complex proofs that characterized all truthful mechanisms that provide a finite approximation ratio in this setting, whereas our new proof uses a simple and direct approach.
We consider the problem of fitting a linear model to data held by individuals who are concerned about their privacy. Incentivizing most players to truthfully report their data to the analyst constrains our design to mechanisms that provide a privacy guarantee to the participants; we use differential privacy to model individuals privacy losses. This immediately poses a problem, as differentially private computation of a linear model necessarily produces a biased estimation, and existing approaches to design mechanisms to elicit data from privacy-sensitive individuals do not generalize well to biased estimators. We overcome this challenge through an appropriate design of the computation and payment scheme.
We consider the problem of allocating a set on indivisible items to players with private preferences in an efficient and fair way. We focus on valuations that have dichotomous marginals, in which the added value of any item to a set is either 0 or 1, and aim to design truthful allocation mechanisms (without money) that maximize welfare and are fair. For the case that players have submodular valuations with dichotomous marginals, we design such a deterministic truthful allocation mechanism. The allocation output by our mechanism is Lorenz dominating, and consequently satisfies many desired fairness properties, such as being envy-free up to any item (EFX), and maximizing the Nash Social Welfare (NSW). We then show that our mechanism with random priorities is envy-free ex-ante, while having all the above properties ex-post. Furthermore, we present several impossibility results precluding similar results for the larger class of XOS valuations. To gauge the robustness of our positive results, we also study $epsilon$-dichotomous valuations, in which the added value of any item to a set is either non-positive, or in the range $[1, 1 + epsilon]$. We show several impossibility results in this setting, and also a positive result: for players that have additive $epsilon$-dichotomous valuations with sufficiently small $epsilon$, we design a randomized truthful mechanism with strong ex-post guarantees. For $rho = frac{1}{1 + epsilon}$, the allocations that it produces generate at least a $rho$-fraction of the maximum welfare, and enjoy $rho$-approximations for various fairness properties, such as being envy-free up to one item (EF1), and giving each player at least her maximin share.
We provide the first separation in the approximation guarantee achievable by truthful and non-truthful combinatorial auctions with polynomial communication. Specifically, we prove that any truthful mechanism guaranteeing a $(frac{3}{4}-frac{1}{240}+v arepsilon)$-approximation for two buyers with XOS valuations over $m$ items requires $exp(Omega(varepsilon^2 cdot m))$ communication, whereas a non-truthful algorithm by Dobzinski and Schapira [SODA 2006] and Feige [2009] is already known to achieve a $frac{3}{4}$-approximation in $poly(m)$ communication. We obtain our separation by proving that any {simultaneous} protocol ({not} necessarily truthful) which guarantees a $(frac{3}{4}-frac{1}{240}+varepsilon)$-approximation requires communication $exp(Omega(varepsilon^2 cdot m))$. The taxation complexity framework of Dobzinski [FOCS 2016] extends this lower bound to all truthful mechanisms (including interactive truthful mechanisms).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا