ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the Evaporation of Non-singular Black Holes

161   0   0.0 ( 0 )
 نشر من قبل Gabor Kunstatter
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model for studying the formation and evaporation of non-singular (quantum corrected) black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric Einstein--Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for radiation back-reaction. The equations of motion describing self-gravitating scalar field collapse are derived in local form both in null co--ordinates and in Painleve--Gullstrand (flat slice) co--ordinates. They provide the starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a compact trapped region. Such spacetimes have been proposed in the past as solutions to the information loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and the resulting energy momentum tensor is manifestly conserved.



قيم البحث

اقرأ أيضاً

122 - F. Canfora , G. Vilasi 2003
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source repre senting a null scalar field with a nonvanishing trace anomaly. It is shown that the nonvanishing trace anomaly of the scalar field prevents a complete evaporation.
We analytically derive a class of non-singular, static and spherically symmetric topological black hole metrics inF(R)-gravity. These have not a de Sitter core at their centre, as most model in standard General Relativity. We study the geometric prop erties and the motion of test particles around these objects. Since they have two horizons, the inner being of Cauchy type, we focus on the problem of mass inflation and show that it occurs except when some extremal conditions are met.
We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. The non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the back-scattered radiation. It is shown that, as a critical mass of the order of Plancks mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.
175 - Betti Hartmann 2008
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d > 4$, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S^2 x S^1 are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
In the present article we study the Inverse Electrodynamics Model. This model is a gauge and parity invariant non-linear Electrodynamics theory, which respects the conformal invariance of standard Electrodynamics. This modified Electrodynamics model, when minimally coupled to General Relativity, is compatible with static and spherically symmetric Reissner-Nordstrom-like black-hole solutions. However, these black-hole solutions present more complex thermodynamic properties than their Reissner-Nordstrom black-hole solutions counterparts in standard Electrodynamics. In particular, in the Inverse Model a new stability region, with both the heat capacity and the free energy negative, arises. Moreover, unlike the scenario in standard Electrodynamics, a sole transition phase is possible for a suitable choice in the set of parameters of these solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا