ترغب بنشر مسار تعليمي؟ اضغط هنا

Half of the Most Luminous Quasars May Be Obscured: Investigating the Nature of WISE-Selected Hot, Dust-Obscured Galaxies

124   0   0.0 ( 0 )
 نشر من قبل Roberto Assef
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The WISE mission has unveiled a rare population of high-redshift ($z=1-4.6$), dusty, hyper-luminous galaxies, with infrared luminosities $L_{rm IR} > 10^{13}~L_{odot}$, and sometimes exceeding $10^{14}~L_{odot}$. Previous work has shown that their dust temperatures and overall far-IR SEDs are significantly hotter than expected for star-formation. We present here an analysis of the rest-frame optical through mid-IR SEDs for a large sample of these so-called Hot, Dust-Obscured Galaxies (Hot DOGs). We find that the SEDs of Hot DOGs are generally well modeled by the combination of a luminous, yet obscured AGN that dominates the rest-frame emission at $lambda > 1murm m$ and the bolometric luminosity output, and a less luminous host galaxy that is responsible for the bulk of the rest optical/UV emission. Even though the stellar mass of the host galaxies may be as large as $10^{11}-10^{12}~M_{odot}$, the AGN emission, with luminosities comparable to those of the most luminous QSOs known, require that either Hot DOGs have black hole masses significantly in excess of the local relations, or that they radiate significantly above the Eddington limit. We show that, while rare, the number density of Hot DOGs is comparable to that of equally luminous but unobscured (i.e., Type 1) QSOs. This is inconsistent with the trend of a diminishing fraction of obscured objects with increasing luminosity found for less luminous QSOs, possibly indicating a reversal in this relation at high luminosity, and that Hot DOGs are not the torus-obscured counterparts of the known optically selected, largely unobscured Hyper-Luminous QSOs. Hot DOGs may represent a different type of galaxy and thus a new component of the galaxy evolution paradigm. Finally, we discuss the environments of Hot DOGs and show that these objects are in regions as dense as those of known high-redshift proto-clusters.(Abridged)



قيم البحث

اقرأ أيضاً

116 - Lulu Fan 2016
Previous studies have shown that WISE-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick AGNs. High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at $zsim3$ using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction ($62pm 14 %$). By fitting the surface brightness profiles, we find that the distribution of Sersic indices in our Hot DOG sample peaks around 2, which suggests that most of Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity ($sim10^{14}L_odot$) of our Hot DOG sample by using IR SEDs decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction (Hickox et al. 2014). Both the high merger fraction in IR-luminous AGN sample and relatively low merger fraction in UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst dominated phase to the unobscured QSO phase.
WISE has discovered an extraordinary population of hyper-luminous dusty galaxies which are faint in the two bluer passbands ($3.4, mu$m and $4.6, mu$m) but are bright in the two redder passbands of WISE ($12, mu$m and $22, mu$m). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the CARMA and SMA interferometer arrays at submm/mm wavelengths. We report continuum detections at $sim$ 1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limits to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1-2 arcsec and are consistent with single point sources. We estimate the masses of cold dust are 2.0$times 10^{8} M_{odot}$ for W0149+2350 and 3.9$times 10^{8} M_{odot}$ for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2$sigma$ upper limits to the molecular gas masses traced by CO, which are 3.3$times 10^{10} M_{odot}$ and 2.3$times 10^{10} M_{odot}$ for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.
98 - E. Glikman , M. Lacy , S. LaMassa 2018
We present a spectroscopically complete sample of 147 infrared-color-selected AGN down to a 22 $mu$m flux limit of 20 mJy over the $sim$270 deg$^2$ of the SDSS Stripe 82 region. Most of these sources are in the QSO luminosity regime ($L_{rm bol} gtrs im 10^{12} L_odot$) and are found out to $zsimeq3$. We classify the AGN into three types, finding: 57 blue, unobscured Type-1 (broad-lined) sources; 69 obscured, Type-2 (narrow-lined) sources; and 21 moderately-reddened Type-1 sources (broad-lined and $E(B-V) > 0.25$). We study a subset of this sample in X-rays and analyze their obscuration to find that our spectroscopic classifications are in broad agreement with low, moderate, and large amounts of absorption for Type-1, red Type-1 and Type-2 AGN, respectively. We also investigate how their X-ray luminosities correlate with other known bolometric luminosity indicators such as [O III] line luminosity ($L_{rm [OIII]}$) and infrared luminosity ($L_{6 mu{rm m}}$). While the X-ray correlation with $L_{rm [OIII]}$ is consistent with previous findings, the most infrared-luminous sources appear to deviate from established relations such that they are either under-luminous in X-rays or over-luminous in the infrared. Finally, we examine the luminosity function (LF) evolution of our sample, and by AGN type, in combination with the complementary, infrared-selected, AGN sample of Lacy et al. (2013), spanning over two orders of magnitude in luminosity. We find that the two obscured populations evolve differently, with reddened Type-1 AGN dominating the obscured AGN fraction ($sim$30%) for $L_{5 mu{rm m}} > 10^{45}$ erg s$^{-1}$, while the fraction of Type-2 AGN with $L_{5 mu{rm m}} < 10^{45}$ erg s$^{-1}$ rises sharply from 40% to 80% of the overall AGN population.
205 - Alexandra Pope 2008
We use deep far-IR, submm, radio and X-ray imaging and mid-IR spectroscopy to explore the nature of a sample of Spitzer-selected dust-obscured galaxies (DOGs) in GOODS-N. A sample of 79 galaxies satisfy the criteria R-[24]>14 (Vega) down to S24>100 m icroJy. Twelve of these galaxies have IRS spectra available which we use to measure redshifts and classify these objects as being dominated by star formation or active galactic nuclei (AGN) activity in the mid-IR. The IRS spectra and Spitzer photometric redshifts confirm that the DOGs lie in a tight redshift distribution around z~2. Based on mid-IR colors, 80% of DOGs are likely dominated by star formation; the stacked X-ray emission from this sub-sample of DOGs is also consistent with star formation. Since only a small number of DOGs are individually detected at far-IR and submm wavelengths, we use a stacking analysis to determine the average flux from these objects and plot a composite IR (8-1000 microns) spectral energy distribution (SED). The average luminosity of these star forming DOGs is LIR~1e12 Lsun. We compare the average star forming DOG to the average bright (S850>5 mJy) submillimeter galaxy (SMG); the S24>100 microJy DOGs are 3 times more numerous but 8 times less luminous in the IR. The far-IR SED shape of DOGs is similar to that of SMGs (average dust temperature of around 30 K) but DOGs have a higher mid-IR to far-IR flux ratio. The average star formation-dominated DOG has a star formation rate of 200 Msun/yr which, given their space density, amounts to a contribution of 0.01 Msun/yr/Mpc3 (or 5-10%) to the star formation rate density at z~2. We use the composite SED to predict the average flux of DOGs in future Herschel/PACS 100 micron and SCUBA-2 450 micron surveys and show that the majority of them will be detected.
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line do minated AGN (type 1.8 or higher), and have higher Balmer decrements than typical type 2 quasars. Almost all (8/9) sources show evidence for ionized gas outflows in the form of broad and blueshifted [O III] profiles, and some sources have such profiles in H$alpha$ (5/7) or [O II] (3/6). Combined with the literature, these results support additional sources of obscuration beyond the simple torus invoked by AGN unification models. Outflow rates derived from the broad [O III] line ($rm gtrsim10^{3},M_{odot},yr^{-1}$) are greater than the black hole accretion and star formation rates, with feedback efficiencies ($sim0.1-1%$) consistent with negative feedback to the host galaxys star formation in merger-driven quasar activity scenarios. We find the broad emission lines in luminous, obscured quasars are often better explained by outflows within the narrow line region, and caution that black hole mass estimates for such sources in the literature may have substantial uncertainty. Regardless, we find lower bounds on the Eddington ratio for Hot DOGs near unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا