A summary of results in heavy flavour physics from Run 1 of the LHC is presented. Topics discussed include spectroscopy, mixing, CP violation and rare decays of charmed and beauty hadrons.
ALICE will study nucleus-nucleus and proton-proton collisions at the LHC. The main goal of the experiment is to investigate the properties of QCD matter at the extreme energy densities that will be reached in Pb-Pb collisions. Heavy quarks (charm and
beauty) are regarded as powerful tools for this study. After briefly reviewing the ALICE heavy-flavour program, we will describe the preparation for the first measurements to be performed with pp collisions.
Motivated by the success of the flavour physics programme carried out over the last decade at the Large Hadron Collider (LHC), we characterize in detail the physics potential of its High-Luminosity and High-Energy upgrades in this domain of physics.
We document the extraordinary breadth of the HL/HE-LHC programme enabled by a putative Upgrade II of the dedicated flavour physics experiment LHCb and the evolution of the established flavour physics role of the ATLAS and CMS general purpose experiments. We connect the dedicated flavour physics programme to studies of the top quark, Higgs boson, and direct high-$p_T$ searches for new particles and force carriers. We discuss the complementarity of their discovery potential for physics beyond the Standard Model, affirming the necessity to fully exploit the LHCs flavour physics potential throughout its upgrade eras.
The LHCb experiment has the potential, during the 2010-11 run, to observe the rare decay $B^0_sto mu^+mu^-$ or improve significantly its exclusion limits. This study will provide very sensitive probes of New Physics (NP) effects. High sensitivity to
NP contributions is also achieved by measuring photon polarization by performing a time dependent analysis of $B^0_s to phigamma$, and by an angular study of the decay $B^0_d to K^{*0}mu^+mu^-$. Preparations for these analyses are presented and studies shown of how existing data, for example prompt $J/psi$ events, can be used to validate the analysis strategy.
In this work we review what we consider are, some of the most relevant results of heavy-ion physics at the LHC. This paper is not intended to cover all the many important results of the experiments, instead we present a brief overview of the current
status on the characterization of the hot and dense QCD medium produced in the heavy-ion collisions. Recent exciting results which are still under debate are discussed too, leading to intriguing questions like whether we have a real or fake QGP formation in small systems.
Recent results from the experiments ZEUS and H1 on charm production in $ep$ collisions are reviewed. The topics are elastic and inelastic $J/psi$ photoproduction, $D^*$ photoproduction differential cross sections and a first look at the proton structure function F_2^{cbar{c}}.